Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 105(6): 1685-1691, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33944573

RESUMO

Dollar spot, caused by Clarireedia spp. (formerly Sclerotinia homoeocarpa F.T. Bennett), is the most economically important turfgrass disease causing considerable damage on golf courses. While cultural practices are available for reducing dollar spot infection, chemical fungicide use is often necessary for maintaining optimal turf quality. Since the release of boscalid in 2003, the succinate dehydrogenase inhibitor (SDHI) class has become an invaluable tool for managing dollar spot. However, resistance to this class has recently been reported in Clarireedia spp. and many other plant pathogenic fungi. After SDHI field failure on four golf courses and one university research plot, a total of six unique SDH mutations conferring differential in vitro sensitivities to SDHIs have been identified in Clarireedia spp. In 2018 and 2019, turf research plots were inoculated with sensitive, non-mutated isolates of Clarireedia spp., as well as resistant isolates harboring each unique identified mutation. Fungicide efficacy trials were conducted on inoculated plots to assess differential sensitivity to five SDHI active ingredients (boscalid, fluxapyroxad, isofetamid, fluopyram, and pydiflumetofen) across mutations under field conditions. Results indicate unique mutations are associated with distinct SDHI field efficacy profiles as shown in in-vitro sensitivity assays. Isolate populations with B subunit mutations (H267Y/R) were more sensitive to fluopyram, whereas isolate populations with C subunit mutations (C-G91R, C-G150R) showed resistance to all SDHIs tested. Mutation-associated differential sensitivity observed under field conditions indicates a need for a nation-wide survey and frequent monitoring of SDHI sensitivity of dollar spot populations on golf courses in the USA. Further, the information gained from this study will be useful in providing sustainable management recommendations for controlling site-specific resistant populations of Clarireedia spp.


Assuntos
Ascomicetos , Succinato Desidrogenase , Ascomicetos/genética , Farmacorresistência Fúngica/genética , Mutação , Doenças das Plantas , Pirazóis , Succinato Desidrogenase/genética , Tiofenos
2.
Plant Dis ; 105(3): 660-666, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32757732

RESUMO

Dollar spot, caused by the ascomycete fungus Clarireedia (formerly Sclerotinia), is one of the most resource-demanding diseases on amenity turfgrasses in North America. Differential resistance to the succinate dehydrogenase inhibitor (SDHI) fungicide class, conferred by singular point mutations on the SdhB, SdhC, and SdhD subunits of the succinate dehydrogenase enzyme (SDH), has been reported in dollar spot as well as many other plant-pathogenic fungal diseases. Four unique mutations were previously reported from Clarireedia field isolates collected from two different cool-season golf courses in Japan and Rhode Island: an amino acid substitution H267Y and a silent mutation (CTT to CTC) at codon 181 on the SdhB subunit gene, and amino acid substitutions G91R and G150R on the SdhC subunit gene. To properly diagnose and monitor SDHI resistance in the field, a rapid detection system for known mutations is crucial. As part of this study, additional SDHI-resistant Clarireedia isolates were collected from Rutgers University research plots and in vitro sensitivity to four SDHI active ingredients was assessed. SdhB, SdhC, and SdhD subunits of these isolates were sequenced to reveal an additional mutation on the SdhB subunit gene, H267R, not previously observed in Clarireedia. Cleaved amplified polymorphic sequence (CAPS) and derived CAPS molecular markers were developed to detect five mutations conferring SDHI resistance in Clarireedia isolates and validated using samples from two additional golf courses in Connecticut and Wisconsin experiencing SDHI field failure. This PCR-based molecular detection system will be useful for continued monitoring, assessment, and delay of SDHI resistance in the field.


Assuntos
Ascomicetos , Succinato Desidrogenase , Ascomicetos/genética , Connecticut , Farmacorresistência Fúngica/genética , Japão , América do Norte , Mutação Puntual , Succinato Desidrogenase/genética , Ácido Succínico , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA