Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 72(2): 320-34, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19298366

RESUMO

Little is known about how metalloproteins in the secretory pathway obtain their metal ion cofactors. We used the Pho8 alkaline phosphatase of the yeast Saccharomyces cerevisiae to probe this process in vivo. We found that both Pho8 activity and protein accumulation are zinc-dependent and decrease in zinc-limited cells. Low Pho8 accumulation was the result of degradation by vacuolar proteases. Surprisingly, the protective effect of zinc on Pho8 stability was not solely due to Zn(2+) binding to the active-site ligands suggesting that the Pho8 protein is targeted for degradation in zinc-limited cells by another mechanism. Pho8 appears to be a rare example of a metalloprotein whose stability is regulated by its metal cofactor independently of active-site binding. We also assessed which zinc transporters are responsible for supplying zinc to Pho8. We found that the Zrc1 and Cot1 vacuolar zinc transporters play the major role while the Msc2/Zrg17 zinc transporter complex active in the endoplasmic reticulum is not involved. These results demonstrate that the vacuolar zinc transporters, previously implicated in metal detoxification, also deliver zinc to certain metalloproteins within intracellular compartments. These data suggest that Pho8 receives its metal cofactor in the vacuole rather than in earlier compartments of the secretory pathway.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Zinco/metabolismo , Fosfatase Alcalina/genética , Proteínas de Transporte de Cátions/genética , Regulação Fúngica da Expressão Gênica , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/metabolismo
2.
J Biol Chem ; 280(31): 28811-8, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-15961382

RESUMO

The cation diffusion facilitator (CDF) family of metal ion transporters plays important roles in zinc transport at all phylogenetic levels. In this report, we describe a novel interaction between two members of the CDF family in Saccharomyces cerevisiae. One CDF member in yeast, Msc2p, was shown recently to be involved in zinc transport into the endoplasmic reticulum (ER) and required for ER function. We describe here a newly recognized CDF family member in yeast, Zrg17p. ZRG17 was previously identified as a zinc-regulated gene controlled by the zinc-responsive Zap1p transcription factor. A zrg17 mutant exhibits the same zinc-suppressible phenotypes as an msc2 mutant, including an induction of the unfolded protein response in low zinc. Moreover, a significant fraction of the total Zrg17p protein appears to localize to the ER. Their common phenotypes and localization suggested that these two proteins function together to mediate zinc transport into the ER. Consistent with this hypothesis, Msc2p and Zrg17p physically interact with each other, as determined by co-immunoprecipitation. Therefore, we propose that Msc2p and Zrg17p form a heteromeric zinc transport complex in the ER membrane. We also demonstrate that ZnT5 and ZnT6, mammalian homologues of Msc2p and Zrg17p, functionally interact as well. These results suggest that heteromeric complexes formed by different CDF members may be a common phenomenon for this ubiquitous family of metal ion transporters.


Assuntos
Substâncias Macromoleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Zinco/metabolismo , Animais , Transporte Biológico , Retículo Endoplasmático/metabolismo , Genótipo , Camundongos , Modelos Moleculares , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
3.
J Cell Biol ; 166(3): 325-35, 2004 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-15277543

RESUMO

In this report, we show that zinc is required for endoplasmic reticulum function in Saccharomyces cerevisiae. Zinc deficiency in this yeast induces the unfolded protein response (UPR), a system normally activated by unfolded ER proteins. Msc2, a member of the cation diffusion facilitator (CDF) family of metal ion transporters, was previously implicated in zinc homeostasis. Our results indicate that Msc2 is one route of zinc entry into the ER. Msc2 localizes to the ER when expressed at normal levels. UPR induction in low zinc is exacerbated in an msc2 mutant. Genetic and biochemical evidence indicates that this UPR induction is due to genuine ER dysfunction. Notably, we found that ER-associated protein degradation is defective in zinc-limited msc2 mutants. We also show that the vacuolar CDF proteins Zrc1 and Cot1 are other pathways of ER zinc acquisition. Finally, zinc deficiency up-regulates the mammalian ER stress response indicating a conserved requirement for zinc in ER function among eukaryotes.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Zinco/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Genes Reporter , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...