Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Semantics ; 7: 23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148435

RESUMO

BACKGROUND: Biobanking necessitates extensive integration of data to allow data analysis and specimen sharing. Ontologies have been demonstrated to be a promising approach in fostering better semantic integration of biobank-related data. Hitherto no ontology provided the coverage needed to capture a broad spectrum of biobank user scenarios. METHODS: Based in the principles laid out by the Open Biological and Biomedical Ontologies Foundry two biobanking ontologies have been developed. These two ontologies were merged using a modular approach consistent with the initial development principles. The merging was facilitated by the fact that both ontologies use the same Upper Ontology and re-use classes from a similar set of pre-existing ontologies. RESULTS: Based on the two previous ontologies the Ontology for Biobanking (http://purl.obolibrary.org/obo/obib.owl) was created. Due to the fact that there was no overlap between the two source ontologies the coverage of the resulting ontology is significantly larger than of the two source ontologies. The ontology is successfully used in managing biobank information of the Penn Medicine BioBank. CONCLUSIONS: Sharing development principles and Upper Ontologies facilitates subsequent merging of ontologies to achieve a broader coverage.


Assuntos
Ontologias Biológicas , Bancos de Espécimes Biológicos
2.
Biopreserv Biobank ; 11(3): 153-60, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24850092

RESUMO

Human biospecimens represent invaluable resources to advance molecular medicine, epidemiology, and biomarker discovery/validation, among other biomedical research. Biobanks typically cryopreserve biospecimens to safeguard their biochemical composition. However, exposing specimens repeatedly to freeze/thaw cycles can degrade their integrity in unforeseen ways. Those biobanks storing liquid samples, thus, regularly make a fundamental compromise at collection time between freezing samples in many small volumes (e.g., 0.5 mL or smaller) or in fewer, larger volumes (e.g., 1.8 mL). The former eliminates the need to expose samples to repeated freeze/thaw cycling, although increasing up-front labor costs, consumables used, and cold storage space requirements. The latter decreases up-front labor costs, consumables, and cold storage requirements, yet exposes samples repeatedly to damaging freeze/thaw cycles when smaller aliquots are needed for analysis. The Rhode Island BioBank at Brown University (RIBB) thoroughly evaluated the performance of an original technology that minimizes a sample's exposure to freeze/thaw cycling by enabling the automated extraction of frozen aliquots from one single frozen parent sample without thawing it. A technology that eliminates unnecessary sample exposures to freeze/thaw cycles could help protect sample integrity, extend its useful life, and effectively rectify and eliminate the aforementioned need to compromise. This report presents the results of the evaluation, and conclusively demonstrates the technology's ability to extract multiple uniform frozen aliquots from a single cryotube of never-thawed frozen human plasma, which faithfully represent the parent sample when analyzed for typical biochemical analytes, showing a coefficient of variability lower than 5.5%.


Assuntos
Bancos de Sangue/economia , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , Adulto , Biomarcadores/análise , Bancos de Sangue/organização & administração , Criopreservação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Plasma , Reprodutibilidade dos Testes , Rhode Island , Soro , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...