Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(4): 395-396, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36509905

Assuntos
Peptídeos , Catálise
2.
Nat Catal ; 5(2): 136-143, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35935533

RESUMO

Enzymes are renowned for their catalytic efficiency and selectivity. Despite the wealth of carbon-carbon bond forming transformations in traditional organic chemistry and nature, relatively few C-C bond forming enzymes have found their way into the biocatalysis toolbox. Here we show that the enzyme UstD performs a highly selective decarboxylative aldol addition with diverse aldehyde substrates to make non-standard, γ-hydroxy amino acids. We increased the activity of UstD through three rounds of classic directed evolution and an additional round of computationally-guided engineering. The enzyme that emerged, UstDv2.0, is efficient in a whole-cell biocatalysis format. The products are highly desirable, functionally rich bioactive γ-hydroxy amino acids that we demonstrate can be prepared stereoselectively on gram-scale. The X-ray crystal structure of UstDv2.0 at 2.25 Šreveals the active site and provides a foundation for probing the mechanism of UstD.

3.
Molecules ; 26(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430436

RESUMO

YqhD, an E. coli alcohol/aldehyde oxidoreductase, is an enzyme able to produce valuable bio-renewable fuels and fine chemicals from a broad range of starting materials. Herein, we report the first computational solution-phase structure-dynamics analysis of YqhD, shedding light on the effect of oxidized and reduced NADP/H cofactor binding on the conformational dynamics of the biocatalyst using molecular dynamics (MD) simulations. The cofactor oxidation states mainly influence the interdomain cleft region conformations of the YqhD monomers, involved in intricate cofactor binding and release. The ensemble of NADPH-bound monomers has a narrower average interdomain space resulting in more hydrogen bonds and rigid cofactor binding. NADP-bound YqhD fluctuates between open and closed conformations, while it was observed that NADPH-bound YqhD had slower opening/closing dynamics of the cofactor-binding cleft. In the light of enzyme kinetics and structural data, simulation findings have led us to postulate that the frequently sampled open conformation of the cofactor binding cleft with NADP leads to the more facile release of NADP while increased closed conformation sampling during NADPH binding enhances cofactor binding affinity and the aldehyde reductase activity of the enzyme.


Assuntos
Aldeído Redutase/química , Aldeído Redutase/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , NADP/química , NADP/metabolismo , Sítios de Ligação , Ligação de Hidrogênio , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato
4.
ACS Chem Biol ; 16(1): 86-95, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33337128

RESUMO

l-Threonine transaldolases (lTTAs) are a poorly characterized class of pyridoxal-5'-phosphate (PLP) dependent enzymes responsible for the biosynthesis of diverse ß-hydroxy amino acids. Here, we study the catalytic mechanism of ObiH, an lTTA essential for biosynthesis of the ß-lactone natural product obafluorin. Heterologously expressed ObiH purifies as a mixture of chemical states including a catalytically inactive form of the PLP cofactor. Photoexcitation of ObiH promotes the conversion of the inactive state of the enzyme to the active form. UV-vis spectroscopic analysis reveals that ObiH catalyzes the retro-aldol cleavage of l-threonine to form a remarkably persistent glycyl quinonoid intermediate, with a half-life of ∼3 h. Protonation of this intermediate is kinetically disfavored, enabling on-cycle reactivity with aldehydes to form ß-hydroxy amino acids. We demonstrate the synthetic potential of ObiH via the single step synthesis of (2S,3R)-ß-hydroxyleucine. To further understand the structural features underpinning this desirable reactivity, we determined the crystal structure of ObiH bound to PLP as the Schiff's base at 1.66 Å resolution. This high-resolution model revealed a unique active site configuration wherein the evolutionarily conserved Asp that traditionally H-bonds to the cofactor is swapped for a neighboring Glu. Molecular dynamics simulations combined with mutagenesis studies indicate that a structural rearrangement is associated with l-threonine entry into the catalytic cycle. Together, these data explain the basis for the unique reactivity of lTTA enzymes and provide a foundation for future engineering and mechanistic analysis.


Assuntos
Glicina Hidroximetiltransferase/metabolismo , Treonina/química , Sequência de Aminoácidos , Aminoácidos/química , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Cinética , Luz , Simulação de Dinâmica Molecular , Conformação Proteica , Fosfato de Piridoxal/química , Quinonas/química , Espectrofotometria Ultravioleta
5.
J Comput Chem ; 38(30): 2605-2617, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28833293

RESUMO

The ability of electronic structure methods (11 density functionals, HF, and MP2 calculations; two basis sets and two solvation models) to accurately calculate the 19 F chemical shifts of 31 structures of fluorinated amino acids and analogues with known experimental 19 F NMR spectra has been evaluated. For this task, BHandHLYP, ωB97X, and Hartree-Fock with scaling factors (provided within) are most accurate. Additionally, the accuracy of methods to calculate relative changes in fluorine shielding across 23 sets of structural variants, such as zwitterionic amino acids versus side chains only, was also determined. This latter criterion may be a better indicator of reliable methods for the ultimate goal of assigning and interpreting chemical shifts of fluorinated amino acids in proteins. It was found that MP2 and M062X calculations most accurately assess changes in shielding among analogues. These results serve as a guide for computational developments to calculate 19 F chemical shifts in biomolecular environments. © 2017 Wiley Periodicals, Inc.


Assuntos
Aminoácidos/química , Modelos Moleculares , Proteínas/química , Flúor , Halogenação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Teoria Quântica
6.
Sci Rep ; 7: 42651, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198426

RESUMO

Fluorinated amino acids serve as valuable biological probes, by reporting on local protein structure and dynamics through 19F NMR chemical shifts. 2-fluorohistidine and 4-fluorohistidine, studied here with DFT methods, have even more capabilities for biophysical studies, as their altered pKa values, relative to histidine, allow for studies of the role of proton transfer and tautomeric state in enzymatic mechanisms. Considering the two tautomeric forms of histidine, it was found that 2-fluorohistidine primarily forms the common (for histidine) τ-tautomer at neutral pH, while 4-fluorohistidine exclusively forms the less common π-tautomer. This suggests the two isomers of fluorohistidine can also serve as probes of tautomeric form within biomolecules, both by monitoring NMR chemical shifts and by potential perturbation of the tautomeric equilibrium within biomolecules. Fluorine also enables assignment of tautomeric states in crystal structures. The differences in experimental pKa values between the isomers was found to arise from solvation effects, providing insight into the polarization and molecular properties of each isomer. Results also encompass 13C and 19F NMR chemical shifts, from both tautomers of 2-fluorohistidine and 4-fluorohistidine in a number of different environments. This work can serve as a guide for interpretation of spectroscopic results in biophysical studies employing 2-fluorohistidine and 4-fluorohistidine.


Assuntos
Corantes Fluorescentes/química , Histidina/análogos & derivados , Histidina/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Prótons , Análise Espectral
7.
Chem Phys Lett ; 666: 58-61, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28603294

RESUMO

Ribonuclease A is the oldest model for studying enzymatic mechanisms, yet questions remain about proton transfer within the active site. Seminal work by Jackson et al. (Science, 1994) labeled Ribonuclease A with 4-fluorohistidine, concluding that active-site histidines act as general acids and bases. Calculations of 4-fluorohistidine indicate that the π-tautomer is predominant in all simulated environments (by ~17 kJ/mol), strongly suggesting that fluoro-labeled ribonuclease A functions with His119 in π-tautomer. The tautomeric form of His119 during proton transfer and tautomerism as a putative mechanistic step in wild-type RNase A remain open questions and should be considered in future mechanistic studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...