Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(7): 1674-1682, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38752350

RESUMO

BACKGROUND: A series of incurable cardiovascular disorders arise due to improper formation of elastin during development. Supravalvular aortic stenosis (SVAS), resulting from a haploinsufficiency of ELN, is caused by improper stress sensing by medial vascular smooth muscle cells, leading to progressive luminal occlusion and heart failure. SVAS remains incurable, as current therapies do not address the root issue of defective elastin. METHODS: We use SVAS here as a model of vascular proliferative disease using both human induced pluripotent stem cell-derived vascular smooth muscle cells and developmental Eln+/- mouse models to establish de novo elastin assembly as a new therapeutic intervention. RESULTS: We demonstrate mitigation of vascular proliferative abnormalities following de novo extracellular elastin assembly through the addition of the polyphenol epigallocatechin gallate to SVAS human induced pluripotent stem cell-derived vascular smooth muscle cells and in utero to Eln+/- mice. CONCLUSIONS: We demonstrate de novo elastin deposition normalizes SVAS human induced pluripotent stem cell-derived vascular smooth muscle cell hyperproliferation and rescues hypertension and aortic mechanics in Eln+/- mice, providing critical preclinical findings for the future application of epigallocatechin gallate treatment in humans.


Assuntos
Estenose Aórtica Supravalvular , Catequina , Proliferação de Células , Modelos Animais de Doenças , Elastina , Células-Tronco Pluripotentes Induzidas , Músculo Liso Vascular , Miócitos de Músculo Liso , Elastina/metabolismo , Animais , Humanos , Catequina/análogos & derivados , Catequina/farmacologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Estenose Aórtica Supravalvular/metabolismo , Estenose Aórtica Supravalvular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Células Cultivadas , Camundongos Endogâmicos C57BL , Feminino , Masculino , Camundongos Knockout
3.
Circulation ; 145(16): 1238-1253, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35384713

RESUMO

BACKGROUND: Familial hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and is typically caused by mutations in genes encoding sarcomeric proteins that regulate cardiac contractility. HCM manifestations include left ventricular hypertrophy and heart failure, arrythmias, and sudden cardiac death. How dysregulated sarcomeric force production is sensed and leads to pathological remodeling remains poorly understood in HCM, thereby inhibiting the efficient development of new therapeutics. METHODS: Our discovery was based on insights from a severe phenotype of an individual with HCM and a second genetic alteration in a sarcomeric mechanosensing protein. We derived cardiomyocytes from patient-specific induced pluripotent stem cells and developed robust engineered heart tissues by seeding induced pluripotent stem cell-derived cardiomyocytes into a laser-cut scaffold possessing native cardiac fiber alignment to study human cardiac mechanobiology at both the cellular and tissue levels. Coupled with computational modeling for muscle contraction and rescue of disease phenotype by gene editing and pharmacological interventions, we have identified a new mechanotransduction pathway in HCM, shown to be essential in modulating the phenotypic expression of HCM in 5 families bearing distinct sarcomeric mutations. RESULTS: Enhanced actomyosin crossbridge formation caused by sarcomeric mutations in cardiac myosin heavy chain (MYH7) led to increased force generation, which, when coupled with slower twitch relaxation, destabilized the MLP (muscle LIM protein) stretch-sensing complex at the Z-disc. Subsequent reduction in the sarcomeric muscle LIM protein level caused disinhibition of calcineurin-nuclear factor of activated T-cells signaling, which promoted cardiac hypertrophy. We demonstrate that the common muscle LIM protein-W4R variant is an important modifier, exacerbating the phenotypic expression of HCM, but alone may not be a disease-causing mutation. By mitigating enhanced actomyosin crossbridge formation through either genetic or pharmacological means, we alleviated stress at the Z-disc, preventing the development of hypertrophy associated with sarcomeric mutations. CONCLUSIONS: Our studies have uncovered a novel biomechanical mechanism through which dysregulated sarcomeric force production is sensed and leads to pathological signaling, remodeling, and hypertrophic responses. Together, these establish the foundation for developing innovative mechanism-based treatments for HCM that stabilize the Z-disc MLP-mechanosensory complex.


Assuntos
Cardiomiopatia Hipertrófica Familiar , Cardiomiopatia Hipertrófica , Actomiosina/genética , Humanos , Proteínas com Domínio LIM , Mecanotransdução Celular , Proteínas Musculares , Mutação , Miócitos Cardíacos
5.
J Mol Cell Cardiol ; 163: 167-174, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34979103

RESUMO

Tissue engineered vascular grafts possess several advantages over synthetic or autologous grafts, including increased availability and reduced rates of infection and thrombosis. Engineered grafts constructed from human induced pluripotent stem cell derivatives further offer enhanced reproducibility in graft production. One notable obstacle to clinical application of these grafts is the lack of elastin in the vessel wall, which would serve to endow compliance in addition to mechanical strength. This study establishes the ability of the polyphenol compound epigallocatechin gallate, a principal component of green tea, to facilitate the extracellular formation of elastin fibers in vascular smooth muscle cells derived from human induced pluripotent stem cells. Further, this study describes the creation of a doxycycline-inducible elastin expression system to uncouple elastin production from vascular smooth muscle cell proliferative capacity to permit fiber formation in conditions conducive to robust tissue engineering.


Assuntos
Células-Tronco Pluripotentes Induzidas , Engenharia Tecidual , Catequina/análogos & derivados , Elastina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Reprodutibilidade dos Testes
6.
Methods Mol Biol ; 2375: 21-34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34591296

RESUMO

Despite numerous efforts to generate vascular tissues that recapitulate the physiological characteristics of native vessels, vascular cell source remains one of the principal challenges in the construction of tissue-engineered vascular grafts (TEVGs). Human pluripotent stem cells, therefore, represent an indispensable source to supply a large production of vascular smooth muscle cells (VSMCs) for cell-based therapy. In particular, human induced pluripotent stem cells (hiPSCs) generated from the same individual have opened up new avenues of achieving patient specificity through the derivation of autologous and immunocompatible VSMCs. This book chapter will detail three representative methods of differentiating hiPSCs into VSMCs that are structurally and functionally mature for TEVG engineering. Luo et al. reported an embryoid body (EB)-based approach to generate a robust, large-scale production of mature, functional hiPSC-derived VSMCs as a cell replacement for vascular tissue engineering. EB formation has an advantage of resembling early embryonic development and allowing cellular interactions in three dimensions. Cheung et al. established a system to produce embryological origin-specific hiPSC-derived VSMCs from the neuroectoderm, lateral plate mesoderm, and paraxial mesoderm lineages in a chemically defined manner. This allows site-specific vascular disease modeling. Moreover, Eoh et al. followed Wanjare et al.'s method to construct hiPSC-derived VSMCs using monolayer cultures of extracellular matrix proteins, with the addition of a pulsatile flow for the secretion of mature, organized elastic fibers. The generation of TEVGs, powered by the unlimited supply of hiPSC-derived VSMCs, has begun a new era in cellular therapy for vascular bypass and defective vessel segment replacement, aimed at addressing millions of cases of cardiovascular diseases across the globe.


Assuntos
Células-Tronco Pluripotentes Induzidas , Músculo Liso Vascular , Diferenciação Celular , Humanos , Miócitos de Músculo Liso , Engenharia Tecidual
7.
Acta Biomater ; 119: 184-196, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166710

RESUMO

Tissue engineered vascular grafts (TEVGs) represent a promising therapeutic option for emergency vascular intervention. Although the application of small-diameter TEVGs using patient-specific primary endothelial cells (ECs) to prevent thrombosis and occlusion prior to implantation could be hindered by the long time course required for in vitro endothelialization, human induced pluripotent stem cells (hiPSCs) provide a robust source to derive immunocompatible ECs (hiPSC-ECs) for immediate TEVG endothelialization. To achieve clinical application, hiPSC-ECs should be derived under culture conditions without the use of animal-derived reagents (xenogeneic-free conditions), to avoid unwanted host immune responses from xenogeneic reagents. However, a completely xenogeneic-free method of hiPSC-EC generation has not previously been established. Herein, we substituted animal-derived reagents used in a standard method of xenogeneic hiPSC-EC differentiation with functional counterparts of human origin. As a result, we generated xenogeneic-free hiPSC-ECs (XF-hiPSC-ECs) with similar marker expression and function to those of human primary ECs. Furthermore, XF-hiPSC-ECs functionally responded to shear stress with typical cell alignment and gene expression. Finally, we successfully endothelialized decellularized human vessels with XF-hiPSC-ECs in a dynamic bioreactor system. In conclusion, we developed xenogeneic-free conditions for generating functional hiPSC-ECs suitable for vascular tissue engineering, which will further move TEVG therapy toward clinical application.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Prótese Vascular , Diferenciação Celular , Células Endoteliais , Humanos , Engenharia Tecidual
8.
Acta Biomater ; 119: 155-168, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130306

RESUMO

Development of mechanically advanced tissue-engineered vascular grafts (TEVGs) from human induced pluripotent stem cell (hiPSC)-derived vascular smooth muscle cells (hiPSC-VSMCs) offers an innovative approach to replace or bypass diseased blood vessels. To move current hiPSC-TEVGs toward clinical application, it is essential to obtain hiPSC-VSMC-derived tissues under xenogeneic-free conditions, meaning without the use of any animal-derived reagents. Many approaches in VSMC differentiation of hiPSCs have been reported, although a xenogeneic-free method for generating hiPSC-VSMCs suitable for vascular tissue engineering has yet to be established. Based on our previously established standard method of xenogeneic VSMC differentiation, we have replaced all animal-derived reagents with functional counterparts of human origin and successfully derived functional xenogeneic-free hiPSC-VSMCs (XF-hiPSC-VSMCs). Next, our group developed tissue rings via cellular self-assembly from XF-hiPSC-VSMCs, which exhibited comparable mechanical strength to those developed from xenogeneic hiPSC-VSMCs. Moreover, by seeding XF-hiPSC-VSMCs onto biodegradable polyglycolic acid (PGA) scaffolds, we generated engineered vascular tissues presenting effective collagen deposition which were suitable for implantation into an immunodeficient mice model. In conclusion, our xenogeneic-free conditions for generating hiPSC-VSMCs produce cells with the comparable capacity for vascular tissue engineering as standard xenogeneic protocols, thereby moving the hiPSC-TEVG technology one step closer to safe and efficacious clinical translation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Humanos , Camundongos , Músculo Liso Vascular , Miócitos de Músculo Liso , Engenharia Tecidual
9.
Cell Stem Cell ; 26(2): 251-261.e8, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31956039

RESUMO

Vascular smooth muscle cells (VSMCs) can be derived in large numbers from human induced pluripotent stem cells (hiPSCs) for producing tissue-engineered vascular grafts (TEVGs). However, hiPSC-derived TEVGs are hampered by low mechanical strength and significant radial dilation after implantation. Here, we report generation of hiPSC-derived TEVGs with mechanical strength comparable to native vessels used in arterial bypass grafts by utilizing biodegradable scaffolds, incremental pulsatile stretching, and optimal culture conditions. Following implantation into a rat aortic model, hiPSC-derived TEVGs show excellent patency without luminal dilation and effectively maintain mechanical and contractile function. This study provides a foundation for future production of non-immunogenic, cellularized hiPSC-derived TEVGs composed of allogenic vascular cells, potentially serving needs to a considerable number of patients whose dysfunctional vascular cells preclude TEVG generation via other methods.


Assuntos
Prótese Vascular , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos de Músculo Liso , Engenharia Tecidual
10.
Stem Cells Dev ; 28(19): 1288-1298, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31359827

RESUMO

Induced pluripotent stem cell (iPSC) technology offers a practically infinite and ethically acceptable source to obtain a variety of somatic cells. Coupled with the biotechnologies of cell therapy or tissue engineering, iPSC technology will enormously contribute to human regenerative medicine. Before clinical application, such human iPSC (hiPSC)-based therapies should be assessed using large animal models that more closely match biological or biomechanical properties of human patients. Therefore, it is critical to generate large animal iPSCs, obtain their iPSC-derived somatic cells, and preclinically evaluate their therapeutic efficacy and safety in large animals. During the past decade, the establishment of iPSC lines of a series of large animal species has been documented, and the acquisition and preclinical evaluation of iPSC-derived somatic cells has also been reported. Despite this progress, significant obstacles, such as obtaining or preserving the bona fide pluripotency of large animal iPSCs, have been encountered. Simultaneously, studies of large animal iPSCs have been overlooked in comparison with those of mouse and hiPSCs, and this field deserves more attention and support due to its important preclinical relevance. Herein, this review will focus on the large animal models of pigs, dogs, horses, and sheep/goats, and summarize current progress, challenges, and potential future directions of research on large animal iPSCs.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Animais , Bibliometria , Biomarcadores/metabolismo , Linhagem Celular , Cães , Cabras , Cavalos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Modelos Animais , Ovinos , Especificidade da Espécie , Suínos , Resultado do Tratamento
11.
Cell Mol Life Sci ; 76(5): 893-901, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30460472

RESUMO

Elastin-associated vasculopathies are life-threatening conditions of blood vessel dysfunction. The extracellular matrix protein elastin endows the recoil and compliance required for physiologic arterial function, while disruption of function can lead to aberrant vascular smooth muscle cell proliferation manifesting through stenosis, aneurysm, or vessel dissection. Although research efforts have been informative, they remain incomplete as no viable therapies exist outside of a heart transplant. Induced pluripotent stem cell technology may be uniquely suited to address current obstacles as these present a replenishable supply of patient-specific material with which to study disease. The following review will cover the cutting edge in vascular smooth muscle cell modeling of elastin-associated vasculopathy, and aid in the development of human disease modeling and drug screening approaches to identify potential treatments. Vascular proliferative disease can affect up to 50% of the population throughout the world, making this a relevant and critical area of research for therapeutic development.


Assuntos
Elastina/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Engenharia Tecidual/métodos , Doenças Vasculares/etiologia , Fenômenos Biomecânicos , Núcleo Celular/fisiologia , Proliferação de Células , Avaliação Pré-Clínica de Medicamentos , Humanos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Transdução de Sinais
12.
Hepatology ; 68(6): 2197-2211, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29790582

RESUMO

Pharmacologic inhibition of acetyl-CoA carboxylase (ACC) enzymes, ACC1 and ACC2, offers an attractive therapeutic strategy for nonalcoholic fatty liver disease (NAFLD) through simultaneous inhibition of fatty acid synthesis and stimulation of fatty acid oxidation. However, the effects of ACC inhibition on hepatic mitochondrial oxidation, anaplerosis, and ketogenesis in vivo are unknown. Here, we evaluated the effect of a liver-directed allosteric inhibitor of ACC1 and ACC2 (Compound 1) on these parameters, as well as glucose and lipid metabolism, in control and diet-induced rodent models of NAFLD. Oral administration of Compound 1 preferentially inhibited ACC enzymatic activity in the liver, reduced hepatic malonyl-CoA levels, and enhanced hepatic ketogenesis by 50%. Furthermore, administration for 6 days to high-fructose-fed rats resulted in a 20% reduction in hepatic de novo lipogenesis. Importantly, long-term treatment (21 days) significantly reduced high-fat sucrose diet-induced hepatic steatosis, protein kinase C epsilon activation, and hepatic insulin resistance. ACCi treatment was associated with a significant increase in plasma triglycerides (approximately 30% to 130%, depending on the length of fasting). ACCi-mediated hypertriglyceridemia could be attributed to approximately a 15% increase in hepatic very low-density lipoprotein production and approximately a 20% reduction in triglyceride clearance by lipoprotein lipase (P ≤ 0.05). At the molecular level, these changes were associated with increases in liver X receptor/sterol response element-binding protein-1 and decreases in peroxisome proliferator-activated receptor-α target activation and could be reversed with fenofibrate co-treatment in a high-fat diet mouse model. Conclusion: Collectively, these studies warrant further investigation into the therapeutic utility of liver-directed ACC inhibition for the treatment of NAFLD and hepatic insulin resistance.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Resistência à Insulina , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/sangue , Acetil-CoA Carboxilase/antagonistas & inibidores , Animais , Ácidos Graxos não Esterificados/sangue , Cetonas/metabolismo , Lipogênese , Lipoproteínas VLDL/sangue , Masculino , Análise do Fluxo Metabólico , PPAR alfa/agonistas , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/metabolismo
13.
Biomaterials ; 147: 116-132, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942128

RESUMO

Development of autologous tissue-engineered vascular constructs using vascular smooth muscle cells (VSMCs) derived from human induced pluripotent stem cells (iPSCs) holds great potential in treating patients with vascular disease. However, preclinical, large animal iPSC-based cellular and tissue models are required to evaluate safety and efficacy prior to clinical application. Herein, swine iPSC (siPSC) lines were established by introducing doxycycline-inducible reprogramming factors into fetal fibroblasts from a line of inbred Massachusetts General Hospital miniature swine that accept tissue and organ transplants without immunosuppression within the line. Highly enriched, functional VSMCs were derived from siPSCs based on addition of ascorbic acid and inactivation of reprogramming factor via doxycycline withdrawal. Moreover, siPSC-VSMCs seeded onto biodegradable polyglycolic acid (PGA) scaffolds readily formed vascular tissues, which were implanted subcutaneously into immunodeficient mice and showed further maturation revealed by expression of the mature VSMC marker, smooth muscle myosin heavy chain. Finally, using a robust cellular self-assembly approach, we developed 3D scaffold-free tissue rings from siPSC-VSMCs that showed comparable mechanical properties and contractile function to those developed from swine primary VSMCs. These engineered vascular constructs, prepared from doxycycline-inducible inbred siPSCs, offer new opportunities for preclinical investigation of autologous human iPSC-based vascular tissues for patient treatment.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Engenharia Tecidual/métodos , Animais , Ácido Ascórbico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Vasos Coronários/fisiologia , Células Endoteliais , Fibroblastos/citologia , Células HEK293 , Humanos , Masculino , Camundongos , Contração Muscular , Músculo Liso Vascular/fisiologia , Ácido Poliglicólico/química , Suínos , Alicerces Teciduais
14.
Chembiochem ; 16(16): 2379-84, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26338230

RESUMO

It has been postulated that sugar radicals and related species are involved in oxidative events involving RNA. To determine the contribution, if any, of these species to the deleterious effects of the endogenous exposome, it is important to unambiguously identify their degradation products. C5'-Pivaloyl uridine was successfully synthesized and subsequently photolytically converted to a C5'-uridinyl radical. Generation of the radical under anaerobic conditions in the presence of glutathione led to the formation of the expected reduction product, uridine. However, regardless of the presence or absence of reductant, the base elimination product, uracil, was also observed. Mass balances and product distributions were dependent upon the pH of the photolysis mixture. At low pH, trapping with glutathione successfully competed with base loss. These results indicate that this precursor should function efficiently in an investigation of the fate of the C5'-uridinyl radical in RNA oligomers.


Assuntos
Radicais Livres/química , Uridina/química , Cristalografia por Raios X , Glutationa/química , Concentração de Íons de Hidrogênio , Luz , Conformação Molecular , Fotólise/efeitos da radiação , RNA/química , Uridina/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...