Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 25(14): 15868-15889, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789099

RESUMO

Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 µm) are required to provide an adequate free spectral range, leading to high index contrast materials such as Si and Si3N4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.

2.
Nat Commun ; 2: 581, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22146400

RESUMO

A long-standing and profound problem in astronomy is the difficulty in obtaining deep near-infrared observations due to the extreme brightness and variability of the night sky at these wavelengths. A solution to this problem is crucial if we are to obtain the deepest possible observations of the early Universe, as redshifted starlight from distant galaxies appears at these wavelengths. The atmospheric emission between 1,000 and 1,800 nm arises almost entirely from a forest of extremely bright, very narrow hydroxyl emission lines that varies on timescales of minutes. The astronomical community has long envisaged the prospect of selectively removing these lines, while retaining high throughput between them. Here we demonstrate such a filter for the first time, presenting results from the first on-sky tests. Its use on current 8 m telescopes and future 30 m telescopes will open up many new research avenues in the years to come.


Assuntos
Astronomia/métodos , Dispositivos Ópticos , Análise Espectral/métodos , Fenômenos Astronômicos , Astronomia/instrumentação , Meio Ambiente Extraterreno , Galáxias , Raios Infravermelhos , Fótons , Análise Espectral/instrumentação , Telescópios
3.
Opt Express ; 17(21): 18643-50, 2009 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20372596

RESUMO

We present results from the first on-sky demonstration of a prototype astronomical integrated photonic spectrograph (IPS) using the Anglo-Australian Telescope near-infrared imaging spectrometer (IRIS2) at Siding Spring Observatory to observe atmospheric molecular OH emission lines. We have succeeded in detecting upwards of 27 lines, and demonstrated the practicality of the IPS device for astronomy. Furthermore, we present a laboratory characterization of the device, which is a modified version of a commercial arrayed-waveguide grating multiplexer. We measure the spectral resolution full-width-half-maximum to be 0.75 +/- 0.05 nm (giving R = lambda/deltalambda = 2100 +/- 150 at 1500 nm). We find the free spectral range to be 57.4 +/- 0.6 nm and the peak total efficiency to be approximately 65%. Finally, we briefly discuss the future steps required to realize an astronomical instrument based on this technology concept.

7.
JAMA ; 245(3): 234, 1981 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-7452841
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...