Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(2): 021101, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089773

RESUMO

Macroscopic dark matter is almost unconstrained over a wide "asteroidlike" mass range, where it could scatter on baryonic matter with geometric cross section. We show that when such an object travels through a star, it produces shock waves that reach the stellar surface, leading to a distinctive transient optical, UV, and x-ray emission. This signature can be searched for on a variety of stellar types and locations. In a dense globular cluster, such events occur far more often than flare backgrounds, and an existing UV telescope could probe orders of magnitude in dark matter mass in one week of dedicated observation.

2.
Phys Rev Lett ; 124(1): 011801, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976725

RESUMO

We propose a new strategy to directly detect light particle dark matter that has long-ranged interactions with ordinary matter. The approach involves distorting the local flow of dark matter with time-varying fields and measuring these distortions with shielded resonant detectors. We apply this idea to sub-MeV dark matter particles with very small electric charges or coupled to a light vector mediator, including the freeze-in parameter space targeted by low mass direct detection efforts. This approach can probe dark matter masses ranging from 10 MeV to below a meV, extending beyond the capabilities of existing and proposed direct detection experiments.

3.
Phys Rev Lett ; 117(18): 181802, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835022

RESUMO

We argue, based on typical properties of known solutions of string or M theory, that the lightest supersymmetric particle of the visible sector is likely to be unstable. In other words, dark matter is probably not a particle with standard model quantum numbers, such as a weakly interacting massive particle. The argument is simple and based on the typical occurrence of (a) hidden sectors, (b) interactions between the standard model (visible) sector and these hidden sectors, and (c) the lack of an argument against massive neutral hidden sector particles being lighter than the lightest visible supersymmetric particle. These conclusions do not rely on arguments such as R-parity violation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...