Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Monoclon Antib Immunodiagn Immunother ; 32(3): 149-61, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23750472

RESUMO

Thrombopoietin and its cognate receptor, c-Mpl, are the primary molecular regulators of megakaryocytopoiesis and platelet production. To date the pattern of c-Mpl expression in human solid tumors and the distribution and biochemical properties of c-Mpl proteins in hematopoietic tissues are largely unknown. We have recently developed highly specific mouse monoclonal antibodies (MAb) against human c-Mpl. In this study we used these antibodies to demonstrate the presence of full-length and truncated human c-Mpl proteins in various megakaryocytic cell types, and their absence in over 100 solid tumor cell lines and in the 12 most common primary human tumor types. Quantitative assays showed a cell context-dependent distribution of full-length and truncated c-Mpl proteins. All forms of human c-Mpl protein were found to be modified with extensive N-linked glycosylation but different degrees of sialylation and O-linked glycosylation. Of note, different variants of full-length c-Mpl protein exhibiting differential glycosylation were expressed in erythromegakaryocytic leukemic cell lines and in platelets from healthy human donors. This work provides a comprehensive analysis of human c-Mpl mRNA and protein expression on normal and malignant hematopoietic and non-hematopoietic cells and demonstrates the multiple applications of several novel anti-c-Mpl antibodies.


Assuntos
Anticorpos Monoclonais/imunologia , Megacariócitos/metabolismo , Proteínas de Neoplasias/imunologia , Receptores de Trombopoetina/imunologia , Plaquetas , Linhagem Celular Tumoral , Proliferação de Células , Glicosilação , Humanos , Megacariócitos/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Trombopoese , Trombopoetina
2.
Cancer Res ; 71(17): 5818-26, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21742770

RESUMO

Despite the prevalence of KRAS mutations in human cancers, there remain no targeted therapies for treatment. The serine-threonine kinase STK33 has been proposed to be required for the survival of mutant KRAS-dependent cell lines, suggesting that small molecule kinase inhibitors of STK33 may be useful to treat KRAS-dependent tumors. In this study, we investigated the role of STK33 in mutant KRAS human cancer cells using RNA interference, dominant mutant overexpression, and small molecule inhibitors. As expected, KRAS downregulation decreased the survival of KRAS-dependent cells. In contrast, STK33 downregulation or dominant mutant overexpression had no effect on KRAS signaling or survival of these cells. Similarly, a synthetic lethal siRNA screen conducted in a broad panel of KRAS wild-type or mutant cells identified KRAS but not STK33 as essential for survival. We also obtained similar negative results using small molecule inhibitors of the STK33 kinase identified by high-throughput screening. Taken together, our findings refute earlier proposals that STK33 inhibition may be a useful therapeutic approach to target human KRAS mutant tumors.


Assuntos
Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras) , Interferência de RNA
3.
Hybridoma (Larchmt) ; 29(2): 103-13, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20443702

RESUMO

Mouse monoclonal antibodies (MAbs) against human c-Mpl, the cognate receptor for thrombopoietin (TPO), were generated using hybridoma technology and characterized by various assays to demonstrate their specificity and affinity. Two such MAbs, 1.6 and 1.75, were determined to be superior for flow cytometry studies and exhibited double-digit picomolar (pM) affinities to soluble human c-Mpl protein. Both MAbs specifically bound to cells engineered to overexpress human c-Mpl protein, immortalized human hematopoietic cell lines that express endogenous c-Mpl, primary human bone marrow and peripheral blood-derived CD34(+) cells, and purified human platelets. No binding was detected on cell lines that did not express c-Mpl. Receptor competition and siRNA knock-down studies further confirmed the specificity of antibodies 1.6 and 1.75 for human c-Mpl. In contrast to these newly generated MAbs, none of eight commercially available anti-c-Mpl antibodies tested were found to bind specifically to human c-Mpl and were thus shown to be unsuitable for flow cytometry studies. Monoclonal antibodies 1.6 and 1.75 will therefore be useful flow cytometry reagents to detect cell surface c-Mpl expression.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Citometria de Fluxo/métodos , Hibridomas/imunologia , Receptores de Trombopoetina/imunologia , Animais , Especificidade de Anticorpos , Linhagem Celular , Humanos , Camundongos , RNA Interferente Pequeno/genética
4.
Blood ; 115(21): 4254-63, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20124514

RESUMO

Certain oncology trials showed worse clinical outcomes in the erythropoiesis-stimulating agent (ESA) arm. A potential explanation was that ESA-activated erythropoietin (Epo) receptors (EpoRs) promoted tumor cell growth. Although there were supportive data from preclinical studies, those findings often used invalidated reagents and methodologies and were in conflict with other studies. Here, we further investigate the expression and function of EpoR in tumor cell lines. EpoR mRNA levels in 209 human cell lines representing 16 tumor types were low compared with ESA-responsive positive controls. EpoR protein production was evaluated in a subset of 66 cell lines using a novel anti-EpoR antibody. EpoR(+) control cells had an estimated 10 000 to 100 000 EpoR dimers/cell. In contrast, 54 of 61 lines had EpoR protein levels lower than 100 dimers/cell. Cell lines with the highest EpoR protein levels (400-3200 dimers/cell) were studied further, and, although one line, NCI-H661, bound detectable levels of [(125)I]-recombinant human Epo (rHuEpo), none showed evidence of ESA-induced EpoR activation. There was no increased phosphorylation of STAT5, AKT, ERK, or S6RP with rHuEpo. In addition, EpoR knockdown with siRNAs did not affect viability in 2 cell lines previously reported to express functional EpoR (A2780 and SK-OV-3). These results conflict with the hypothesis that EpoR is functionally expressed in tumors.


Assuntos
Neoplasias/genética , Neoplasias/metabolismo , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Sobrevivência Celular , Primers do DNA/genética , Eritropoetina/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Hematínicos/farmacologia , Humanos , Masculino , Modelos Biológicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Interferente Pequeno/genética , Receptores da Eritropoetina/antagonistas & inibidores , Proteínas Recombinantes , Transdução de Sinais
5.
Blood ; 115(17): 3616-24, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20053755

RESUMO

Iron maldistribution has been implicated in multiple diseases, including the anemia of inflammation (AI), atherosclerosis, diabetes, and neurodegenerative disorders. Iron metabolism is controlled by hepcidin, a 25-amino acid peptide. Hepcidin is induced by inflammation, causes iron to be sequestered, and thus, potentially contributes to AI. Human hepcidin (hHepc) overexpression in mice caused an iron-deficient phenotype, including stunted growth, hair loss, and iron-deficient erythropoiesis. It also caused resistance to supraphysiologic levels of erythropoiesis-stimulating agent, supporting the hypothesis that hepcidin may influence response to treatment in AI. To explore the role of hepcidin in inflammatory anemia, a mouse AI model was developed with heat-killed Brucella abortus treatment. Suppression of hepcidin mRNA was a successful anemia treatment in this model. High-affinity antibodies specific for hHepc were generated, and hHepc knock-in mice were produced to enable antibody testing. Antibody treatment neutralized hHepc in vitro and in vivo and facilitated anemia treatment in hHepc knock-in mice with AI. These data indicate that antihepcidin antibodies may be an effective treatment for patients with inflammatory anemia. The ability to manipulate iron metabolism in vivo may also allow investigation of the role of iron in a number of other pathologic conditions.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Anticorpos Neutralizantes/farmacologia , Peptídeos Catiônicos Antimicrobianos/antagonistas & inibidores , Ferro/metabolismo , Anemia Ferropriva/genética , Anemia Ferropriva/imunologia , Anemia Ferropriva/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Brucella abortus , Modelos Animais de Doenças , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Hepcidinas , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos
6.
Cytokine ; 45(2): 124-31, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19128982

RESUMO

There are currently two Food and Drug Administration-approved classes of biologic agents that target tumor necrosis factor-alpha (TNF-alpha): anti-TNF monoclonal antibodies (mAbs) (adalimumab and infliximab), and soluble TNF receptors (etanercept). This study examined the ability of the TNF antagonists to: (1) bind various polymorphic variants of cell surface-expressed Fc receptors (FcgammaRs) and the complement component C1q, and (2) mediate Ab-dependent cellular cytotoxicity (ADCC) and complement-mediated cytotoxicity (CDC) killing of cells expressing membrane-bound TNF (mTNF) in vitro. Both mAbs and the soluble TNF receptor demonstrated low-level binding to the activating receptors FcgammaRI, FcgammaRIIa, and FcgammaRIIIa, and the inhibitory receptor FcgammaRIIb, in the absence of exogenous TNF. However, upon addition of TNF, the mAbs, but not etanercept, showed significantly increased binding, in particular to the FcgammaRII and FcgammaRIII receptors. Infliximab and adalimumab induced ADCC much more potently than etanercept. In the presence of TNF, both mAbs bound C1q in in vitro assays, but etanercept did not bind C1q under any conditions. Infliximab and adalimumab also induced CDC in cells expressing mTNF more potently than etanercept. Differences in the ability to bind ligand and mediate cell death may account for the differences in efficacy and safety of TNF antagonists.


Assuntos
Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa , Adalimumab , Anticorpos Monoclonais Humanizados , Linhagem Celular , Complemento C1q/metabolismo , Citotoxicidade Imunológica , Etanercepte , Humanos , Infliximab , Receptores de IgG/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
7.
Nucleic Acids Res ; 32(18): 5321-38, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15475387

RESUMO

Germline mutations in the DNA mismatch repair (MMR) genes MSH2 and MLH1 are responsible for the majority of hereditary non-polyposis colorectal cancer (HNPCC), an autosomal-dominant early-onset cancer syndrome. Genetic testing of both MSH2 and MLH1 from individuals suspected of HNPCC has revealed a considerable number of missense codons, which are difficult to classify as either pathogenic mutations or silent polymorphisms. To identify novel MLH1 missense codons that impair MMR activity, a prospective genetic screen in the yeast Saccharomyces cerevisiae was developed. The screen utilized hybrid human-yeast MLH1 genes that encode proteins having regions of the yeast ATPase domain replaced by homologous regions from the human protein. These hybrid MLH1 proteins are functional in MMR in vivo in yeast. Mutagenized MLH1 fragments of the human coding region were synthesized by error-prone PCR and cloned directly in yeast by in vivo gap repair. The resulting yeast colonies, which constitute a library of hybrid MLH1 gene variants, were initially screened by semi-quantitative in vivo MMR assays. The hybrid MLH1 genes were recovered from yeast clones that exhibited a MMR defect and sequenced to identify alterations in the mutagenized region. This investigation identified 117 missense codons that conferred a 2-fold or greater decreased efficiency of MMR in subsequent quantitative MMR assays. Notably, 10 of the identified missense codons were equivalent to codon changes previously observed in the human population and implicated in HNPCC. To investigate the effect of all possible codon alterations at single residues, a comprehensive mutational analysis of human MLH1 codons 43 (lysine-43) and 44 (serine-44) was performed. Several amino acid replacements at each residue were silent, but the majority of substitutions at lysine-43 (14/19) and serine-44 (18/19) reduced the efficiency of MMR. The assembled data identifies amino acid substitutions that disrupt MLH1 structure and/or function, and should assist the interpretation of MLH1 genetic tests.


Assuntos
Reparo do DNA , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Proteínas Adaptadoras de Transdução de Sinal , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Fusão Gênica Artificial , Pareamento Incorreto de Bases , Proteínas de Transporte , Códon/genética , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Análise Mutacional de DNA , Proteínas Fúngicas/genética , Testes Genéticos , Humanos , Dados de Sequência Molecular , Proteína 1 Homóloga a MutL , Mutagênese , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Alinhamento de Sequência
8.
Dev Biol ; 272(1): 104-17, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15242794

RESUMO

Maternal hypothyroxinemia during early pregnancy poses an increased risk for poor neuropsychological development of the fetus. We tested the hypothesis that maternal hypothyroidism before the onset of fetal thyroid function also affects postnatal development of heart and lungs. This question was addressed in transgenic mice that express herpes simplex virus thymidine kinase in their thyroidal follicle cells. Treatment with ganciclovir rendered these mice severely hypothyroid because viral thymidine kinase converts ganciclovir into a cytotoxic nucleoside analog. Since ganciclovir crosses the placenta, it also destroyed the thyroid of transgenic embryos while leaving the thyroids of nontransgenic littermates unaffected. Hypothyroidism of both mother and fetus did not affect prenatal heart and lung development. However, the postnatal switch from beta- to alpha-myosin heavy chain (beta- and alpha-MHC, respectively) gene expression and the increase of SERCA-2a mRNA expression did not occur in the ventricular myocardium of either the transgenic (thyroid destroyed) or nontransgenic (intact thyroid) offspring of hypothyroid mothers. Similarly, postnatal animals of the latter two groups retained elevated surfactant protein (SP) A, B, and C mRNA levels in their alveolar epithelium. In hypothyroid pups from hypothyroid mothers, these changes were accompanied by decreased alveolar septation. Our study shows that these effects of maternal hypothyroidism become manifest after birth and are aggravated by the concomitant existence of neonatal hypothyroidism.


Assuntos
Coração/crescimento & desenvolvimento , Pulmão/crescimento & desenvolvimento , Hormônios Tireóideos/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , ATPases Transportadoras de Cálcio , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipotireoidismo/metabolismo , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Proteína A Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/genética , Valores de Referência , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Tireoglobulina/genética , Hormônios Tireóideos/farmacologia
9.
J Steroid Biochem Mol Biol ; 86(1): 15-26, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12943741

RESUMO

The yeast Saccharomyces cerevisiae was used to reconstruct a human estrogen receptor alpha (ERalpha)-mediated transcription activation system. The level of reporter gene activation was dependent on both the position of the estrogen response element (ERE) relative to the translation start site and the number of EREs in the hybrid promoter. A G400V amino acid alteration in the ERalpha polypeptide decreased sensitivity to 17beta-estradiol (E(2)), demonstrating the hormone responsiveness of ERalpha to be qualitatively and quantitatively similar in yeast and mammalian cells. Coexpression of SRC-1a, a potent stimulator of ERalpha function in mammalian cells, potentiated ERalpha-mediated gene expression over fivefold in a E(2)-dependent manner. Deletion of 56 amino acids at the C-terminal end of SRC-1a resulted in a protein with enhanced ability to potentiate ERalpha-mediated gene expression, which mimics the activity of the same truncation in human SRC-1a as well as the SRC-1e isoform that has the 56 C-terminal residues replaced with a different 14 amino acid peptide. The selective estrogen receptor modulator tamoxifen acted as a weak agonist of ERalpha-mediated gene expression and this weak activity was potentiated by SRC-1. Tamoxifen had no effect on E(2)-induced gene activation in either the presence or absence of SRC-1. In contrast to previously reported yeast-based ERalpha-transactivation systems, the system reported here in which SRC-1 functions as a bona fide coactivator should permit a more thorough dissection of the factors involved in ERalpha-mediated transcriptional activation.


Assuntos
Receptores de Estrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tamoxifeno/análogos & derivados , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio , Galactosidases/análise , Galactosidases/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Genes Reporter/genética , Vetores Genéticos , Histona Acetiltransferases , Humanos , Coativador 1 de Receptor Nuclear , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas , Receptores de Estrogênio/agonistas , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Elementos de Resposta/genética , Saccharomyces cerevisiae/citologia , Tamoxifeno/farmacologia , Transativadores/biossíntese
10.
Virology ; 310(1): 24-8, 2003 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-12788627

RESUMO

Recent work suggests that herpes simplex virus (HSV) stromal keratitis in the mouse is caused by autoreactive T lymphocytes triggered by a 16 amino acid region of the HSV UL6 protein (aa299-314), Science 279, 1344-1347). In the present study we sought to determine whether genetic variation of this presumed autoreactive UL6 epitope is responsible for different pathogenic patterns of human HSV keratitis. To accomplish this, we sequenced the HSV UL6 gene from ocular isolates of 10 patients with necrotizing stromal keratitis, 7 patients with recurrent epithelial keratitis, and 8 patients with other forms of HSV keratitis. The sequences obtained predicted identical UL6(299-314) epitopes for all 25 viral isolates. Furthermore, the upstream sequence of all isolates was free of insertions, deletions, and stop codons. We conclude that different pathogenic patterns of human HSV keratitis occur independent of genetic variation of the HSV UL6 (299-314) epitope.


Assuntos
Proteínas do Capsídeo , Capsídeo , Genes Virais , Ceratite Herpética/virologia , Simplexvirus/genética , Capsídeo/química , Humanos , RNA Viral/análise , Proteínas Virais
11.
J Mol Microbiol Biotechnol ; 4(6): 539-50, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12432954

RESUMO

This study evaluated the transcriptional regulation of four reporter genes in Saccharomyces cerevisiae by the human tumor suppressor protein p53. The S. cerevisiae ADE2, HIS3 and URA3 genes were used with nutritional selections and the E. coli LacZ gene was used to quantitate reporter gene activation. DNA elements containing binding sites for p53 were introduced upstream of several 5' truncated yeast promoters and used to express reporter genes. Human p53 cDNA was expressed at different levels by utilizing three different yeast promoters. All reporter genes were activated by p53, and in the case of nutritional selections, basal reporter gene expression could be detected in the absence of p53. A gap repair assay was evaluated and optimized for the purpose of determining whether p53 encoded in various cDNA sources was functional in transcriptional transactivation. The basal levels of reporter gene transcription in the absence of p53 could be decreased by integration of the reporter gene in the chromosome. For several expression systems, p53 appears to be limiting since higher levels of reporter gene expression were observed when the p53 cDNA was expressed from more efficient promoters. The gap repair assay can be used to determine the genotype (homozygous wild type, homozygous mutant or heterozygous) for cDNA generated from human cell lines or tissue samples. This assay can also be used to evaluate mutation rates associated with various conditions for in vitro PCR amplification of DNA.


Assuntos
Regulação Fúngica da Expressão Gênica , Genes Reporter , Saccharomyces cerevisiae/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Escherichia coli/genética , Humanos , Óperon Lac/fisiologia , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Seleção Genética , Proteína Supressora de Tumor p53/genética
12.
Proc Natl Acad Sci U S A ; 99(2): 978-83, 2002 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11773630

RESUMO

Infection of the mouse trigeminal ganglia (TG) is the most commonly used model for the study of herpes simplex virus type 1 (HSV-1) latency. Its popularity is caused, at least in part, by the perception that latent infection can be studied in this system in the absence of spontaneous viral reactivation. However, this perception has never been rigorously tested. To carefully study this issue, the eyes of Swiss-Webster mice were inoculated with HSV-1 (KOS), and 37-47 days later the TG were dissected, serial-sectioned, and probed for HSV-1 ICP4, thymidine kinase, glycoprotein C, and latency-associated transcript RNA by in situ hybridization. Serial sections of additional latently infected TG were probed with HSV-1-specific polyclonal antisera. Analysis of thousands of probed sections revealed abundant expression of viral transcripts, viral protein, and viral DNA replication in about 1 neuron per 10 TG tested. These same neurons were surrounded by a focal white cell infiltrate, indicating the presence of an antigenic stimulus. We conclude that productive cycle viral genes are abundantly expressed in rare neurons of latently infected murine TG and that these events are promptly recognized by an active local immune response. In the absence of detectable infectious virus in these ganglia, we propose the term "spontaneous molecular reactivation" to describe this ongoing process.


Assuntos
Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Animais , Antígenos Virais/genética , DNA Viral/genética , DNA Viral/metabolismo , Feminino , Expressão Gênica , Genes Virais , Herpesvirus Humano 1/imunologia , Proteínas Imediatamente Precoces/genética , Hibridização In Situ , Ceratite Herpética/etiologia , Ceratite Herpética/patologia , Ceratite Herpética/virologia , Camundongos , RNA Viral/genética , RNA Viral/metabolismo , Timidina Quinase/genética , Fatores de Tempo , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...