Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 345(2): 496-504, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20181355

RESUMO

This laboratory study mimicked the pollution of a suspension of silica beads, used as a crude model of sand, by naphthalene in mixture with carbofuran at first, and then by this mixture in association with a metal salt, Pb(NO(3))(2). The silica properties and the working conditions were such that they allowed us to only observe physisorption, which is the first and essential step of any adsorption mechanism. Naphthalene and carbofuran were, respectively, chosen as hydrocarbon and pesticide. Naphthalene adsorption from simple solutions is rather large compared to other organic adsorptions, and carbofuran seems to adsorb on a layer of naphthalene when the latter is mixed in solution with carbofuran. Like other organics, naphthalene favours the adsorption of lead ions, but ionic adsorption is considerably increased by the combination of naphthalene and carbofuran. The Wagner-Onsager-Samaras theory shows that the result implies a special organization of organic molecules at the interface. Conclusions about some environmental mechanisms of fixation, or release, of ions on sands in the case of simple physisorption are drawn from the study.

2.
Langmuir ; 22(21): 8790-9, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17014119

RESUMO

This paper reports on investigations about the adsorption at the air-water surface, and for the sake of comparison at the silica-solution interface, of two 1-2 electrolytes, Pb(NO(3))(2) and PbCl(2), at first alone and then from a mixture with carbofuran or with benzene; all of them were at concentrations below 10(-2) M. The limited domain, where the Debye and Hückel formalism for solutions and the Wagner-Onsager-Samaras (WOS) model for surfaces are correct, is then respected. This study was aimed at trying to identify the part played in the surface by the different particles of the system components and in particular the role of water. When aqueous solutions of nonorganic salts are dilute enough, their surface tensions are known to be salt concentration-independent; however, the zero value of the resulting relative adsorption has never been the subject of analysis about water behavior. By combining experimental relative adsorptions and Gibbs excesses calculated from the WOS theory, we will show that, in well-known solutions such as KCl ones, where the negative excess in salt can be very precisely modeled by the WOS theory, the resulting water excess Gamma(W) is negative. The same result can be obtained by taking into account the Ray-Jones effect. This observation drove us to wonder about the results of a similar analysis done on solutions of unsymmetrical electrolytes and on mixtures of salt and organic molecules. Experiments showed that, for all of the systems, Gamma(W) was negative. For a given salt, Gamma(W) was more negative in the presence of organic molecules, and carbofuran was a more efficient water repellent than benzene; water repulsion was greater with nitrates than with chlorides. From these data, it seems that water was repelled toward the solution bulk, whereas ions probably took place between the bulk and a layer of organic molecules. These observations called for a more detailed modeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...