Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930500

RESUMO

Mycoplasma capricolum subsp. capricolum (Mcc) and Mycoplasma capricolum subsp. capripneumoniae (Mccp) are pathogens that affect large and small ruminants. Indeed, Mcc affects both sheep and goats, causing contagious agalactia (CA). Mccp affects only goats, causing contagious caprine pleuropneumonia (CCPP). CA and CCPP are mainly controlled using inactivated Mcc and Mccp vaccines. However, producing the vaccine with the Mccp strain is complex, fastidious, and costly due to the slow growth of the bacterium. In this study, we present new oil-adjuvanted and inactivated Mcc and Mccp vaccines for sheep and goats against CA and CCPP. The vaccines were evaluated for safety and efficacy using experimental infection. A serological response was observed one week after of the first vaccination of sheep and goats with Mcc and goats with Mccp. The vaccinated animals were subsequently challenged with the virulent Mcc MOR20 strain. The Mcc vaccine was demonstrated to provide robust protection when the animals were challenged with Mcc MOR20. Cross-protection against the Mcc MOR20 challenge was also obtained with the Mccp vaccine. This finding revealed, for the first time, the safety and efficacy of an inactivated Mcc vaccine against contagious agalactia and cross-protection between Mcc and Mccp strains.

2.
Vaccines (Basel) ; 12(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543936

RESUMO

The use of effective vaccines is among the most important strategies for the prevention and progressive control of transboundary infectious animal diseases. However, the use of vaccine is often impeded by the cost, a lack of cold chains and other factors. In resource-limited countries in Africa, one approach to improve coverage and reduce cost is to vaccinate against multiple diseases using combined vaccines. Therefore, the objective of this study was to evaluate a combined vaccine for the prevention and control of Lumpy Skin Disease (LSD), Contagious Bovine Pleuropneumonia (CBPP) and Rift Valley fever (RVF). The LSD and CBPP were formulated as a combined vaccine, and the RVF was formulated separately as live attenuated vaccines. These consisted of a Mycoplasma MmmSC T1/44 strain that was propagated in Hayflick-modified medium, RVF virus vaccine, C13T strain prepared in African green monkey cells (Vero), and the LSDV Neethling vaccine strain prepared in primary testis cells. The vaccines were tested for safety via the subcutaneous route in both young calves and pregnant heifers with no side effect, abortion or teratogenicity. The vaccination of calves induced seroconversions for all three vaccines starting from day 7 post-vaccination (PV), with rates of 50% for LSD, 70% for CBPP and 100% for RVF, or rates similar to those obtained with monovalent vaccines. The challenge of cattle vaccinated with the LSD/CBPP and the RVF vaccine afforded full protection against virulent strains of LSDV and RVFV. A satisfactory level of protection against a CBPP challenge was observed, with 50% of protection at 6 months and 81% at 13 months PV. A mass vaccination trial was performed in four regions of Burkina Faso that confirmed safety and specific antibody responses induced by the vaccines. The multivalent LSD/CBPP+RVF vaccine provides a novel and beneficial approach to the control of the three diseases through one intervention and, therefore, reduces the cost and improves vaccination coverage.

3.
Vet World ; 16(1): 68-75, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36855364

RESUMO

Background and Aim: Mannheimia haemolytica causes respiratory infection and mortality in sheep and goats, similar to the effects in cattle, which causes major economic damage. Regular vaccinations alongside good management practices remain the most efficient tools for controlling this disease. Indeed, vaccines against pasteurellosis are available, but results on their efficacy have varied. Therefore, this study aimed to evaluate the efficacy of three vaccines against mannheimiosis in small ruminants. Materials and Methods: We evaluated three vaccines developed from a local field isolate based on the inactivated bacterium, its toxoid, and a mixture of bacterin/toxoid, which we then tested on sheep and goats. Selected criteria that were evaluated were safety, antibody response, and protection through a challenge. Post-vaccination monitoring was carried out by enzyme-linked immunosorbent assay. The evaluation was based on antibody responses to vaccination in sheep and goats for both bacteria and leukotoxin. Protection was assessed by clinical and lesion scores after the challenge of vaccinated goats with a pathogenic strain. Results: The three tested vaccines were completely safe, did not cause any adverse reactions, and induced significant antibody titers in immunized animals. Following M. haemolytica challenge, unvaccinated goats showed clinical signs with lesions typical of the disease. Meanwhile, the best protection was obtained with the inactivated combined bacterin/toxoid vaccine. Conclusion: This study highlighted the effectiveness of adding a bacterial toxoid in the vaccine as a promising solution for preventing mannheimiosis in small ruminants. Because of the worldwide distribution of M. haemolytica infection, general prophylaxis based on a combined inactivated vaccine could greatly benefit.

4.
Viruses ; 14(2)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35215965

RESUMO

Mycoplasma mycoides subsp. mycoides (Mmm) is the causative agent of contagious bovine pleuropneumonia (CBPP). Lumpy skin disease (LSD) is a viral disease of cattle caused by lumpy skin disease virus (LSDV). LSD and CBPP are both transboundary diseases spreading in the same areas of Africa and Asia. A combination vaccine to control CBPP and LSD offers significant value to small-scale livestock keepers as a single administration. Access to a bivalent vaccine may improve vaccination rates for both pathogens. In the present study, we evaluated the LSDV/CBPP live combined vaccine by testing the generation of virus neutralizing antibodies, immunogenicity, and safety on target species. In-vitro assessment of the Mycoplasma effect on LSDV growth in cell culture was evaluated by infectious virus titration and qPCR during 3 serial passages, whereas in-vivo interference was assessed through the antibody response to vaccination. This combined Mmm/LSDV vaccine could be used to protect cattle against both diseases with a single vaccination in the endemic countries. There were no adverse reactions detected in this study and inoculated cattle produced high levels of specific antibodies starting from day 7 post-vaccination, suggesting that this combination vaccine is both safe and effective.


Assuntos
Vacinas Bacterianas/imunologia , Doença Nodular Cutânea/prevenção & controle , Vírus da Doença Nodular Cutânea/imunologia , Mycoplasma/imunologia , Pleuropneumonia Contagiosa/prevenção & controle , Animais , Vacinas Bacterianas/administração & dosagem , Bovinos , Doença Nodular Cutânea/imunologia , Pleuropneumonia Contagiosa/imunologia , Vacinação/veterinária , Vacinas Atenuadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...