Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 23(25): 6056-6068, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27925311

RESUMO

The dimesitylphosphinocyclopentene/HB(C6 F5 )2 -derived vicinal trans-1,2-P/B frustrated Lewis pair (FLP) 4 shows no direct phosphane-borane interaction. Toward some reagents it behaves similar to an intermolecular FLP; it cleaves dihydrogen, deprotonates terminal alkynes, and adds to organic carbonyl compounds including CO2 . It shows typical intramolecular FLP reaction modes (cooperative 1,1-additions) to mesityl azide, to carbon monoxide, and to NO. The latter reaction yields a persistent P/B FLPNO nitroxide radical, which undergoes H-atom abstraction reactions. The FLP 4 serves as a template for the CO reduction by [HB(C6 F5 )2 ] to generate a FLP-η2 -formylborane. The formylborane moiety is removed from the FLP template by reaction with pyridine to yield a genuine pyridine stabilized formylborane that undergoes characteristic borane carbaldehyde reactions (Wittig olefination, imine formation). Most new products were characterized by X-ray diffraction.

2.
PLoS One ; 11(6): e0157944, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27336303

RESUMO

Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine coupling between the unpaired electron and the 11B/10B, 14N and 31P nuclear magnetic moments. It was previously shown that continuous-wave spectra measured at X-band frequency (9.5 GHz) are dominated by the magnetic hyperfine coupling to 14N and 31P, whereas the g-tensor values and the 11B hyperfine coupling parameters cannot be refined with high precision from lineshape fitting. On the other hand, the X-band electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectra are completely dominated by the nuclear hyperfine coupling to the 11B nuclei, allowing a selective determination of their interaction parameters. In the present work this analysis has been further validated by temperature dependent ESEEM measurements. In addition, pulsed EPR data measured in the Q-band (34 GHz) are reported, which present an entirely different situation: the g-tensor components can be measured with much higher precision, and the ESEEM and HYSCORE spectra contain information about all of the 10B, 11B, 14N and 31P hyperfine interaction parameters. Based on these new results, we report here high-accuracy and precision data of the EPR spin Hamiltonian parameters measured on six FLP-NO radical species embedded in their corresponding hydroxylamine host structures. While the ESEEM spectra at Q-band frequency turn out to be very complex (due to the multinuclear contribution to the overall signal) in the HYSCORE experiment the extension over two dimensions renders a better discrimination between the different nuclear species, and the signals arising from hyperfine coupling to 10B, 11B, 14N and 31P nuclei can be individually analyzed.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Modelos Teóricos , Algoritmos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Temperatura
3.
J Chem Phys ; 142(12): 124201, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25833572

RESUMO

Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and (11)B, (14)N, and (31)P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that different from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to (14)N and (31)P, the ESEEM and HYSCORE spectra contain important information about the (11)B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...