Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 16786, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033295

RESUMO

Infertility is a challenging phenomenon in cattle that reduces the sustainability of beef production worldwide. Here, we tested the hypothesis that gene expression profiles of protein-coding genes expressed in peripheral white blood cells (PWBCs), and circulating micro RNAs in plasma, are associated with female fertility, measured by pregnancy outcome. We drew blood samples from 17 heifers on the day of artificial insemination and analyzed transcript abundance for 10,496 genes in PWBCs and 290 circulating micro RNAs. The females were later classified as pregnant to artificial insemination, pregnant to natural breeding or not pregnant. We identified 1860 genes producing significant differential coexpression (eFDR < 0.002) based on pregnancy outcome. Additionally, 237 micro RNAs and 2274 genes in PWBCs presented differential coexpression based on pregnancy outcome. Furthermore, using a machine learning prediction algorithm we detected a subset of genes whose abundance could be used for blind categorization of pregnancy outcome. Our results provide strong evidence that transcript abundance in circulating white blood cells is associated with fertility in heifers.


Assuntos
Expressão Gênica , Leucócitos/metabolismo , Resultado da Gravidez/veterinária , Animais , Bovinos , Feminino , Inseminação Artificial/veterinária , Gravidez , Transcriptoma
2.
J Anim Sci Biotechnol ; 10: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891236

RESUMO

BACKGROUND: Artificial insemination is a preferred breeding method for beef heifers as it advances the genetic background, produces a predictive and profitable calving season, and extends the heifer's reproductive life span. As reproductive efficiency in heifers is key for the success of beef cattle production systems, following artificial insemination, heifers are exposed to a bull for the remainder of the breeding season. Altogether, up to 95% of heifers might become pregnant in their first breeding season. Heifers that do not become pregnant at the end of the breeding season represent an irreparable economical loss. Additionally, heifers conceiving late in the breeding season to natural service, although acceptable, poses serious losses to producers. To minimize losses due to reproductive failure, different phenotypic parameters can be assessed and utilized as selection tools. Here, we tested the hypothesis that in a group of pre-selected heifers, records of weaning weight, age at weaning, age at artificial insemination, and age of dam differ among heifers of varied reproductive outcomes during the first breeding season. RESULTS: None of the parameters tested presented predictive ability to discriminate the heifers based on the response variable ('pregnant to artificial insemination', 'pregnant to natural service', 'not pregnant'). Heifers categorized with body condition score = 6 and reproductive tract score ≥ 4 had the greatest proportion of pregnancy to artificial insemination (49% and 44%, respectively). Furthermore, it was notable that heifers presenting body condition score = 6 and reproductive tract score = 5 presented the greatest pregnancy rate at end of the breeding season (89%). Heifers younger than 368 d at the start of the breeding season did not become pregnant to artificial insemination. Those young heifers had 12.5% chance to become pregnant in their first breeding season, compared to 87.5% if the heifers were older than 368 days. CONCLUSION: Our results suggest that beef heifers with body condition score = 6 and reproductive tract score ≥ 4 are more likely to become pregnant to artificial insemination. Careful assessment should be undertaken when developing replacement heifers that will not reach 12 months of age by the beginning of the breeding season.

3.
BMC Genomics ; 19(1): 129, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426285

RESUMO

BACKGROUND: Infertility is a longstanding limitation in livestock production with important economic impact for the cattle industry. Female reproductive traits are polygenic and lowly heritable in nature, thus selection for fertility is challenging. Beef cattle operations leverage estrous synchronization in combination with artificial insemination (AI) to breed heifers and benefit from an early and uniform calving season. A couple of weeks following AI, heifers are exposed to bulls for an opportunity to become pregnant by natural breeding (NB), but they may also not become pregnant during this time period. Focusing on beef heifers, in their first breeding season, we hypothesized that: a- at the time of AI, the transcriptome of peripheral white blood cells (PWBC) differs between heifers that become pregnant to AI and heifers that become pregnant late in the breeding season by NB or do not become pregnant during the breeding season; and b- the ratio of transcript abundance between genes in PWBC classifies heifers according to pregnancy by AI, NB, or failure to become pregnant. RESULTS: We generated RNA-sequencing data from 23 heifers from two locations (A: six AI-pregnant and five NB-pregnant; and B: six AI-pregnant and six non-pregnant). After filtering out lowly expressed genes, we quantified transcript abundance for 12,538 genes. The comparison of gene expression levels between AI-pregnant and NB-pregnant heifers yielded 18 differentially expressed genes (DEGs) (ADAM20, ALDH5A1, ANG, BOLA-DQB, DMBT1, FCER1A, GSTM3, KIR3DL1, LOC107131247, LOC618633, LYZ, MNS1, P2RY12, PPP1R1B, SIGLEC14, TPPP, TTLL1, UGT8, eFDR≤0.02). The comparison of gene expression levels between AI-pregnant and non-pregnant heifers yielded six DEGs (ALAS2, CNKSR3, LOC522763, SAXO2, TAC3, TFF2, eFDR≤0.05). We calculated the ratio of expression levels between all gene pairs and assessed their potential to classify samples according to experimental groups. Considering all samples, relative expression from two gene pairs correctly classified 10 out of 12 AI-pregnant heifers (P = 0.0028) separately from the other 11 heifers (NB-pregnant, or non-pregnant). CONCLUSION: The transcriptome profile in PWBC, at the time of AI, is associated with the fertility potential of beef heifers. Transcript levels of specific genes may be further explored as potential classifiers, and thus selection tools, of heifer fertility.


Assuntos
Fertilidade/genética , Inseminação Artificial/veterinária , Leucócitos/metabolismo , Carne Vermelha/normas , Transcriptoma , Animais , Cruzamento , Bovinos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Masculino , Gravidez , Resultado da Gravidez/veterinária , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...