Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 29(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28887871

RESUMO

Our modern lifestyle is characterised by easy access to nutrient dense foods combined with limited physical activity. A sedentary lifestyle is one of several factors that have contributed to the global obesity epidemic and it also predisposes to chronic illnesses such as diabetes and cardiovascular disease. Although many studies have focused on the benefits of exercise in peripheral tissues, the contributions of the central nervous system to these exercise-induced metabolic adaptations are relatively unknown. The present review highlights the role of the ventromedial hypothalamus in regulating the metabolic response to exercise.


Assuntos
Adaptação Fisiológica , Exercício Físico , Condicionamento Físico Animal , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Metabolismo Energético , Humanos , Obesidade/metabolismo
2.
Neuroscience ; 240: 70-82, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23485805

RESUMO

The physiological effects of melanocortin-4 receptor (MC4-R) on metabolism have been hypothesized to be mediated individually or collectively by neuronal groups innervating the paraventricular nucleus of the hypothalamus (PVH). The present study was designed to identify MC4-R-expressing neurons that innervate the PVH using retrograde tract tracing techniques in the MC4-R-GFP reporter mice. Our initial mapping identified very limited projections from MC4-R-expressing neurons to the PVH. This included a defined population of MC4-R-positive neurons located in the ventral premmamillary nucleus (PMv). Anterograde tracing experiments confirmed projections from PMv neurons to the medial parvicellular subdivision of the PVH, in close proximity to oxytocin neurons and ß-endorphin-containing fibers. Given the known stimulatory effects of leptin and sexual odorants exposure on many PMv neurons, it was expected that MC4-R-expressing neurons in the PMv might be responsive to leptin and activated by odors exposure. Contrary to expectation, MC4-R-GFP neurons in the PMv do not respond to leptin as demonstrated by double labeling for GFP and leptin-induced phosphorylated STAT3. However, we found that Fos expression is induced in a large subset of MC4-R-GFP neurons in the PMv in response to opposite sex odors. Collectively, these results provide evidence for a previous unrecognized role of MC4-R expressed by neurons innervating the PVH that are also sensitive to reproductive cues.


Assuntos
Corpos Mamilares/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Toxina da Cólera/metabolismo , Dextranos/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Leptina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Neurônios/citologia , Odorantes , Condutos Olfatórios/fisiologia , Proteínas Oncogênicas v-fos/metabolismo , Núcleo Hipotalâmico Paraventricular , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Fator de Transcrição STAT3/metabolismo , beta-Endorfina/metabolismo
3.
Mol Psychiatry ; 10(2): 132-46, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15630408

RESUMO

Regulated energy homeostasis is fundamental for maintaining life. Unfortunately, this critical process is affected in a high number of mentally ill patients. Eating disorders such as anorexia nervosa are prevalent in modern societies. Impaired appetite and weight loss are common in patients with depression. In addition, the use of neuroleptics frequently produces obesity and diabetes mellitus. However, the neural mechanisms underlying the pathophysiology of these behavioral and metabolic conditions are largely unknown. In this review, we first concentrate on the established brain machinery of food intake and body weight, especially on the melanocortin and neuropeptide Y (NPY) systems as illustration. These systems play a critical role in receiving and processing critical peripheral metabolic cues such as leptin and ghrelin. It is also notable that both systems modulate emotion and motivated behavior as well. Secondly, we discuss the significance and potential promise of multidisciplinary molecular and neuroanatomic techniques that will likely increase the understanding of brain circuitries coordinating energy homeostasis and emotion. Finally, we introduce several lines of evidence suggesting a link between the melanocortin/NPY systems and several neurotransmitter systems on which many of the psychotropic agents exert their influence.


Assuntos
Regulação do Apetite/fisiologia , Peso Corporal/fisiologia , Emoções/fisiologia , Transtornos da Alimentação e da Ingestão de Alimentos/fisiopatologia , Leptina/fisiologia , alfa-MSH/fisiologia , Animais , Antipsicóticos/efeitos adversos , Diabetes Mellitus/induzido quimicamente , Diabetes Mellitus/fisiopatologia , Metabolismo Energético/fisiologia , Transtornos da Alimentação e da Ingestão de Alimentos/genética , Homeostase/fisiologia , Humanos , Leptina/genética , Neuropeptídeo Y/genética , Neuropeptídeo Y/fisiologia , Obesidade/induzido quimicamente , Obesidade/fisiopatologia , RNA Mensageiro/análise , alfa-MSH/genética
4.
Mol Cell Endocrinol ; 184(1-2): 173-85, 2001 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-11694353

RESUMO

Weight homeostasis is exquisitely sensitive to changes in the abundance of melanocortin-4 receptor (MC4-R). To begin to understand the factors that regulate MC4-R gene expression, we determined there are no introns in the gene, there are multiple starts of transcription, and a cluster of 3' ends. A series of MC4-R-luciferase gene reporter chimerics was developed and transfected into cell lines expressing (UMR106; GT1-7; HEK293) and not expressing (Neuro 2A) endogenous MC4-R mRNA. The longest construct, which includes approximately 3.3 kb 5'-flanking, 425 bp 5'-untranslated (UTR) and 1852 bp 3'-flanking, significantly increased luciferase reporter gene expression 24-, 13-, and 3-fold compared to pGL3-basic when expressed in HEK293, UMR106, and GT1-7 cells, respectively. Deletion analysis of mMC4-R 5'-flanking cDNA identified full mMC4-R promoter activity within 178 bp upstream of the major start of transcription. The mMC4-R gene structure and reporter chimerics provide a fundamental framework for the identification of specific factors regulating MC4-R gene expression.


Assuntos
Região 5'-Flanqueadora/genética , Regulação da Expressão Gênica/genética , Camundongos/genética , Receptores da Corticotropina/genética , Região 3'-Flanqueadora/genética , Região 5'-Flanqueadora/fisiologia , Animais , Sequência de Bases , Clonagem Molecular , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo , Ratos , Receptor Tipo 4 de Melanocortina , Alinhamento de Sequência , Distribuição Tecidual , Transcrição Gênica/genética , Células Tumorais Cultivadas
5.
J Neurosci ; 21(19): RC168, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11567079

RESUMO

Orexins (also called hypocretins) are peptide neurotransmitters expressed in neurons of the lateral hypothalamic area (LHA). Mice lacking the orexin peptides develop narcolepsy-like symptoms, whereas mice with a selective loss of the orexin neurons develop hypophagia and severe obesity in addition to the narcolepsy phenotype. These different phenotypes suggest that orexin neurons may contain neurotransmitters besides orexin that regulate feeding and energy balance. Dynorphin neurons are common in the LHA, and dynorphin has been shown to influence feeding; hence, we studied whether dynorphin and orexin are colocalized. In rats, double-label in situ hybridization revealed that nearly all (94%) neurons expressing prepro-orexin mRNA also expressed prodynorphin mRNA. The converse was also true: 96% of neurons in the LHA containing prodynorphin mRNA also expressed prepro-orexin mRNA. Double-label immunohistochemistry confirmed that orexin-A and dynorphin-A peptides were highly colocalized in the LHA. Wild-type mice and orexin knock-out mice showed abundant prodynorphin mRNA-expressing neurons in the LHA, but orexin/ataxin-3 mice with a selective loss of the orexin neurons completely lacked prodynorphin mRNA in this area, further confirming that within the LHA, dynorphin expression is restricted to the orexin neurons. These findings suggest that dynorphin-A may play an important role in the function of the orexin neurons.


Assuntos
Proteínas de Transporte/metabolismo , Dinorfinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Precursores de Proteínas/metabolismo , Animais , Ataxina-3 , Proteínas de Transporte/genética , Dinorfinas/genética , Fórnice/citologia , Fórnice/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Proteínas Nucleares , Orexinas , Precursores de Proteínas/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras , Fatores de Transcrição
6.
Proc Natl Acad Sci U S A ; 98(17): 9930-5, 2001 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-11504950

RESUMO

A common complaint among pain patients is that they lose their appetite. These accounts are anecdotal, however, and the neural mechanism underlying pain-induced loss of appetite remains unknown. In this study, we documented the occurrence of appetite loss in patients under migraine attack and investigated the neuronal substrate of pain-induced anorexia in our animal model of intracranial pain. We found that loss of appetite during the migraine attack in humans coincided strongly with the onset and duration of the head pain in 32/39 cases, and that brief noxious stimulation of the dura in conscious rats produced a transient suppression of food intake. Mapping of neuronal activation in the rat showed that noxious dural stimulation induced a 3- to 4-fold increase in the number of Fos-positive neurons in medullary dorsal horn areas that process nociceptive signals (laminae I, V) and in parabrachial and hypothalamic neurons positioned to suppress feeding behavior. In the parabrachial area, activated neurons were localized in the superior-lateral subnucleus, and 40% of them expressed the mRNA encoding the anorectic neuropeptide cholecystokinin. In the hypothalamus, activated Fos-positive neurons were found in the dorsomedial area of the ventromedial nucleus, and 76% of them expressed the mRNA for cholecystokinin type-B receptor. Based on these findings, we suggest that at least one of several groups of hypothalamic neurons that normally inhibit appetite in response to metabolic cues is positioned to mediate the suppression of food intake by pain signals.


Assuntos
Anorexia/fisiopatologia , Tronco Encefálico/metabolismo , Colecistocinina/biossíntese , Dura-Máter/fisiopatologia , Proteínas do Tecido Nervoso/biossíntese , Nociceptores/fisiologia , Dor/fisiopatologia , Receptores da Colecistocinina/biossíntese , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Anorexia/etiologia , Colecistocinina/genética , Ingestão de Alimentos/fisiologia , Estimulação Elétrica , Humanos , Hibridização In Situ , Masculino , Transtornos de Enxaqueca/fisiopatologia , Transtornos de Enxaqueca/psicologia , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Neurônios/química , Neurônios/fisiologia , Dor/psicologia , Proteínas Proto-Oncogênicas c-fos/análise , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Receptores da Colecistocinina/genética , Núcleos do Trigêmeo/metabolismo
7.
J Neurosci ; 21(13): 4864-74, 2001 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-11425913

RESUMO

The suprachiasmatic nucleus (SCN), the circadian pacemaker for the brain, provides a massive projection to the subparaventricular zone (SPZ), but the role of the SPZ in circadian processes has received little attention. We examined the effects on circadian rhythms of sleep, body temperature, and activity in rats of restricted ibotenic acid lesions of the ventral or dorsal SPZ that spared the immediately adjacent paraventricular hypothalamic nucleus (PVH) and the SCN. Ventral SPZ lesions caused profound reduction of measures of circadian index of sleep (by 90%) and locomotor activity (75% reduction) but had less effect on body temperature (50% reduction); dorsal SPZ lesions caused greater reduction of circadian index of body temperature (by 70%) but had less effect on circadian index of locomotor activity (45% reduction) or sleep (<5% reduction). The loss of circadian regulation of body temperature or sleep was replaced by a strong ultradian rhythm (period approximately 3 hr). Lesions of the PVH, immediately dorsal to the SPZ, had no significant effect on any circadian rhythms that we measured, nor did the lesions affect the baseline body temperature. However, the fever response after intravenous injection of lipopolysaccharide (5 microg/kg) was markedly decreased in the rats with PVH lesions (66.6%) but not dorsal SPZ lesions. These results indicate that circadian rhythms of sleep and body temperatures are regulated by separate neuronal populations in the SPZ, and different aspects of thermoregulation (circadian rhythm and fever response) are controlled by distinct anatomical substrates.


Assuntos
Ciclos de Atividade/fisiologia , Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Hipotálamo Anterior/fisiologia , Ácido Ibotênico/administração & dosagem , Ciclos de Atividade/efeitos dos fármacos , Animais , Temperatura Corporal/efeitos dos fármacos , Contagem de Células , Ritmo Circadiano/efeitos dos fármacos , Eletrodos Implantados , Eletroencefalografia , Eletromiografia , Hipotálamo Anterior/citologia , Hipotálamo Anterior/efeitos dos fármacos , Imuno-Histoquímica , Lipopolissacarídeos/farmacologia , Masculino , Microinjeções , Atividade Motora/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Sono REM/efeitos dos fármacos , Organismos Livres de Patógenos Específicos , Núcleo Supraquiasmático/fisiologia
8.
J Comp Neurol ; 435(1): 6-25, 2001 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-11370008

RESUMO

Orexins (hypocretins) are neuropeptides synthesized in the central nervous system exclusively by neurons of the lateral hypothalamus. Orexin-containing neurons have widespread projections and have been implicated in complex physiological functions including feeding behavior, sleep states, neuroendocrine function, and autonomic control. Two orexin receptors (OX(1)R and OX(2)R) have been identified, with distinct expression patterns throughout the brain, but a systematic examination of orexin receptor expression in the brain has not appeared. We used in situ hybridization histochemistry to examine the patterns of expression of mRNA for both orexin receptors throughout the brain. OX(1)R mRNA was observed in many brain regions including the prefrontal and infralimbic cortex, hippocampus, paraventricular thalamic nucleus, ventromedial hypothalamic nucleus, dorsal raphe nucleus, and locus coeruleus. OX(2)R mRNA was prominent in a complementary distribution including the cerebral cortex, septal nuclei, hippocampus, medial thalamic groups, raphe nuclei, and many hypothalamic nuclei including the tuberomammillary nucleus, dorsomedial nucleus, paraventricular nucleus, and ventral premammillary nucleus. The differential distribution of orexin receptors is consistent with the proposed multifaceted roles of orexin in regulating homeostasis and may explain the unique role of the OX(2)R receptor in regulating sleep state stability.


Assuntos
Região Hipotalâmica Lateral/fisiologia , Ratos Sprague-Dawley/fisiologia , Receptores de Neuropeptídeos/genética , Animais , Sistema Nervoso Autônomo/fisiologia , Córtex Cerebral/química , Córtex Cerebral/fisiologia , Comportamento Alimentar/fisiologia , Expressão Gênica/fisiologia , Hipocampo/química , Hipocampo/fisiologia , Região Hipotalâmica Lateral/química , Hibridização In Situ , Locus Cerúleo/química , Locus Cerúleo/fisiologia , Masculino , Núcleos da Linha Média do Tálamo/química , Núcleos da Linha Média do Tálamo/fisiologia , Narcolepsia/fisiopatologia , Receptores de Orexina , RNA Mensageiro/análise , Núcleos da Rafe/química , Núcleos da Rafe/fisiologia , Ratos , Receptores Acoplados a Proteínas G , Sono/fisiologia , Organismos Livres de Patógenos Específicos , Núcleo Hipotalâmico Ventromedial/química , Núcleo Hipotalâmico Ventromedial/fisiologia
9.
J Clin Invest ; 107(8): 1017-23, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11306605

RESUMO

Thyroid hormone thyroxine (T(4)) and tri-iodothyronine (T(3)) production is regulated by feedback inhibition of thyrotropin (TSH) and thyrotropin-releasing hormone (TRH) synthesis in the pituitary and hypothalamus when T(3) binds to thyroid hormone receptors (TRs) interacting with the promoters of the genes for the TSH subunit and TRH. All of the TR isoforms likely participate in the negative regulation of TSH production in vivo, but the identity of the specific TR isoforms that negatively regulate TRH production are less clear. To clarify the role of the TR-beta2 isoform in the regulation of TRH gene expression in the hypothalamic paraventricular nucleus, we examined preprothyrotropin-releasing hormone (prepro-TRH) expression in mice lacking the TR-beta2 isoform under basal conditions, after the induction of hypothyroidism with propylthiouracil, and in response to T(3) administration. Prepro-TRH expression was increased in hypothyroid wild-type mice and markedly suppressed after T(3) administration. In contrast, basal TRH expression was increased in TR-beta2-null mice to levels seen in hypothyroid wild-type mice and did not change significantly in response to induction of hypothyroidism or T(3) treatment. However, the suppression of TRH mRNA expression in response to leptin reduction during fasting was preserved in TR-beta2-null mice. Thus TR-beta2 is the key TR isoform responsible for T(3)-mediated negative-feedback regulation by hypophysiotropic TRH neurons.


Assuntos
Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores dos Hormônios Tireóideos/fisiologia , Hormônio Liberador de Tireotropina/metabolismo , Animais , Jejum , Leptina/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/genética , Tiroxina/metabolismo
10.
Proc Natl Acad Sci U S A ; 98(7): 3998-4003, 2001 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-11274423

RESUMO

Congenital hypothyroidism and the thyroid hormone (T(3)) resistance syndrome are associated with severe central nervous system (CNS) dysfunction. Because thyroid hormones are thought to act principally by binding to their nuclear receptors (TRs), it is unexplained why TR knock-out animals are reported to have normal CNS structure and function. To investigate this discrepancy further, a T(3) binding mutation was introduced into the mouse TR-beta locus by homologous recombination. Because of this T(3) binding defect, the mutant TR constitutively interacts with corepressor proteins and mimics the hypothyroid state, regardless of the circulating thyroid hormone concentrations. Severe abnormalities in cerebellar development and function and abnormal hippocampal gene expression and learning were found. These findings demonstrate the specific and deleterious action of unliganded TR in the brain and suggest the importance of corepressors bound to TR in the pathogenesis of hypothyroidism.


Assuntos
Hipotireoidismo/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Animais , Doenças Cerebelares/etiologia , Doenças Cerebelares/metabolismo , Doenças Cerebelares/fisiopatologia , Hipotálamo/metabolismo , Hipotireoidismo/complicações , Hipotireoidismo/genética , Deficiências da Aprendizagem/etiologia , Deficiências da Aprendizagem/metabolismo , Camundongos , Camundongos Knockout , Sistema Hipófise-Suprarrenal/metabolismo , Receptores dos Hormônios Tireóideos/deficiência , Receptores dos Hormônios Tireóideos/genética , Glândula Tireoide/metabolismo
11.
J Comp Neurol ; 432(1): 1-19, 2001 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-11241374

RESUMO

Cocaine- and amphetamine-regulated transcript (CART) is a recently described neuropeptide widely expressed in the rat brain. CART mRNA and peptides are found in hypothalamic sites such as the paraventricular nucleus (PVH), the supraoptic nucleus (SON), the lateral hypothalamic area (LHA), the dorsomedial nucleus of the hypothalamus (DMH), the arcuate nucleus (Arc), the periventricular nucleus (Pe), and the ventral premammillary nucleus (PMV). Intracerebroventricular administration of recombinant CART peptide decreases food intake and CART mRNA levels in the Arc are regulated by leptin. Leptin administration induces Fos expression in hypothalamic CART neurons in the PVH, the DMH, the Arc, and the PMV. In the current study, we used double label in situ hybridization histochemistry to investigate the potential direct action of leptin on hypothalamic CART neurons and to define the chemical identity of the hypothalamic CART neurons in the rat brain. We found that CART neurons in the Arc, DMH, and PMV express long form leptin-receptor mRNA, and the suppressor of cytokine signaling-3 (SOCS-3) mRNA after an acute dose of intravenous leptin. We also found that CART neurons in the parvicellular PVH, in the DMH and in the posterior Pe coexpress thyrotropin-releasing hormone (TRH) mRNA. CART neurons in the magnocellular PVH and in the SON coexpress dynorphin (DYN), and CART cell bodies in the LHA and in the posterior Pe coexpress melanin-concentrating hormone (MCH) and glutamic acid decarboxylase (GAD-67) mRNA. In the Arc, a few CART neurons coexpress neurotensin (NT) mRNA. In addition, we examined the distribution of CART immunoreactivity in the human hypothalamus. We found CART cell bodies in the PVH, in the SON, in the LHA, in the Arc (infundibular nucleus) and in the DMH. We also observed CART fibers throughout the hypothalamus, in the bed nucleus of the stria terminalis, and in the amygdala. Our results indicate that leptin directly acts on CART neurons in distinct nuclei of the rat hypothalamus. Furthermore, hypothalamic CART neurons coexpress neuropeptides involved in energy homeostasis, including MCH, TRH, DYN, and NT. The distribution of CART cell bodies and fibers in the human hypothalamus indicates that CART may also play a role in the regulation of energy homeostasis in humans.


Assuntos
Regulação da Expressão Gênica , Hipotálamo/metabolismo , Leptina/farmacologia , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Adulto , Idoso , Animais , Comportamento Alimentar/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hormônios Hipotalâmicos/genética , Hipotálamo/citologia , Imuno-Histoquímica , Injeções Intraventriculares , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Melaninas/genética , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/farmacologia , Neurônios/citologia , Neuropeptídeos/análise , Neuropeptídeos/genética , Neurotransmissores/análise , Neurotransmissores/genética , Orexinas , Especificidade de Órgãos , Hormônios Hipofisários/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Transcrição Gênica
12.
J Clin Invest ; 107(1): 111-20, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11134186

RESUMO

Starvation causes a rapid reduction in thyroid hormone levels in rodents. This adaptive response is caused by a reduction in thyrotropin-releasing hormone (TRH) expression that can be reversed by the administration of leptin. Here we examined hypothalamic signaling pathways engaged by leptin to upregulate TRH gene expression. As assessed by leptin-induced expression of suppressor of cytokine signaling-3 (SOCS-3) in fasted rats, TRH neurons in the paraventricular nucleus are activated directly by leptin. To a greater degree, they also contain melanocortin-4 receptors (MC4Rs), implying that leptin can act directly or indirectly by increasing the production of the MC4R ligand, alpha-melanocyte stimulating hormone (alpha-MSH), to regulate TRH expression. We further demonstrate that both pathways converge on the TRH promoter. The melanocortin system activates the TRH promoter through the phosphorylation and DNA binding of the cAMP response element binding protein (CREB), and leptin signaling directly regulates the TRH promoter through the phosphorylation of signal transducer and activator of transcription 3 (Stat3). Indeed, a novel Stat-response element in the TRH promoter is necessary for leptin's effect. Thus, the TRH promoter is an ideal target for further characterizing the integration of transcriptional pathways through which leptin acts.


Assuntos
Leptina/farmacologia , Receptores de Peptídeos/metabolismo , Proteínas Repressoras , Hormônio Liberador de Tireotropina/genética , Fatores de Transcrição , Animais , Sequência de Bases , Sítios de Ligação/genética , DNA/genética , Jejum/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Modelos Biológicos , Dados de Sequência Molecular , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Regiões Promotoras Genéticas , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 4 de Melanocortina , Receptores para Leptina , Receptores de Peptídeos/genética , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina , alfa-MSH/metabolismo , alfa-MSH/farmacologia
13.
Physiol Behav ; 74(4-5): 703-8, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11790432

RESUMO

Leptin affects feeding, metabolism, and neuroendocrine status. It is now clearly established that the hypothalamus coordinates these responses, though the specific brain regions engaged by leptin remain unclear. We have used combinations of neuroanatomic techniques to identify candidate pathways in the central nervous system underlying leptin action. Leptin decreases body weight in part by activating the sympathetic nervous system, resulting in increased thermogenesis and energy expenditure. We investigated hypothalamic pathways underlying leptin's effects on stimulating the sympathetic nervous system. We found that leptin activates neurons in the retrochiasmatic area (RCA) and lateral arcuate nucleus (Arc) that innervate the sympathetic preganglionic neurons in the thoracic spinal cord and also contain cocaine- and amphetamine-regulated transcript (CART). We also found that CART neurons in the RCA and the Arc coexpress pro-opiomelanocortin (POMC) mRNA. Recent studies have reinforced the view that the lateral hypothalamic area (LHA) regulates food intake and body weight. Using retrograde tracing with leptin administration, we found retrogradely labeled cells in the Arc contained neuropeptide Y (NPY) mRNA or POMC mRNA. Following leptin administration, NPY cells in the Arc did not express Fos but expressed suppressor of cytokine signaling-3 (SOCS-3) mRNA. In contrast, leptin induced both Fos and SOCS-3 expression in POMC neurons, many of which also innervated the LHA. We suggest that leptin directly activates POMC/CART neurons that project to the LHA, the paraventricular hypothalamic nucleus (PVH), and spinal sympathetic preganglionic neurons. These projections link circulating leptin and neurons that regulate feeding behavior, energy expenditure, and body weight homeostasis.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Ingestão de Alimentos/fisiologia , Hipotálamo/fisiologia , Leptina/fisiologia , Rede Nervosa/fisiologia , Neuropeptídeos/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Peso Corporal/fisiologia , Mapeamento Encefálico , Camundongos , Proteínas do Tecido Nervoso/fisiologia , Pró-Opiomelanocortina/fisiologia , Ratos
14.
Int J Obes Relat Metab Disord ; 25 Suppl 5: S78-82, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11840221

RESUMO

Leptin affects body weight by decreasing food intake, activating the sympathetic nervous system and regulating neuroendocrine function. This type of regulation is a hallmark of hypothalamic control, which typically integrates autonomic, endocrine and behavioral responses. We have performed a series of experiments investigating hypothalamic pathways underlying these actions of leptin. We found that leptin activates neurons that coexpress pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) mRNA. These neurons innervate several sites, including sympathetic preganglionic neurons in the spinal cord, neurons in the paraventricular hypothalamic nucleus (PVH), and melanin-concentrating hormone and orexin neurons in the lateral hypothalamic area (LHA). Following leptin administration, POMC neurons express both Fos and suppressor of cytokine signalling-3 (SOCS-3) mRNA. In contrast, leptin induced SOCS-3 expression in neuropeptide Y (NPY) neurons but not Fos, suggesting that leptin acts differentially on NPY and POMC cells. We also investigated potential downstream targets of leptin responsive NPY and POMC neurons by assessing the distribution of the melanocortin 4 receptor (MC4-R) mRNA and Y1 and Y5 NPY receptor mRNA in chemically defined neurons. We found dense MC4-R mRNA expression in several sites including the PVH and LHA. Using dual-label in situ hybridization we found that MC4-R mRNA is coexpressed in PVH cells expressing pro-TRH mRNA. We also found Y1 and Y5 NPY receptor mRNA in the PVH in patterns very similar to that of MC4R, suggesting that these receptors may be coexpressed on at least some PVH neurons. These results provide a neuroanatomic framework explaining the endocrine, autonomic and behavioral effects of leptin.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Comportamento/fisiologia , Glândulas Endócrinas/fisiologia , Hipotálamo/fisiologia , Leptina/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Sistema Nervoso Autônomo/efeitos dos fármacos , Comportamento/efeitos dos fármacos , Glândulas Endócrinas/efeitos dos fármacos , Humanos , Hipotálamo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neuropeptídeo Y/fisiologia
15.
J Comp Neurol ; 428(1): 20-32, 2000 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-11058222

RESUMO

The action of prostaglandin E(2) (PGE(2)) in the preoptic area is thought to play an important role in producing fever. Pharmacologic evidence suggests that, among the four subtypes of E-series prostaglandin (EP) receptors, i.e., EP(1), EP(2), EP(3), and EP(4), the EP(1) receptor mediates fever responses. In contrast, evidence from mice with EP receptor gene deletions indicates that the EP(3) receptor is required for the initial (<1 hour) fever after intravenous (i.v.) lipopolysaccharide (LPS). To investigate which subtypes of EP receptors mediate systemic infection-induced fever, we assessed the coexpression of Fos-like immunoreactivity (Fos-IR) and EP(1-4) receptor mRNA in nuclei in the rat hypothalamus that have been shown to be involved in fever responses. Two hours after the administration of i.v. LPS (5 microg/kg), Fos-IR was observed in the ventromedial preoptic nucleus, the median preoptic nucleus, and the paraventricular hypothalamic nucleus. In these nuclei, EP(4) receptor mRNA was strongly expressed and the Fos-IR intensely colocalized with EP(4) receptor mRNA. Strong EP(3) receptor mRNA expression was only seen within the median preoptic nucleus but Fos-IR showed little coexpression with EP(3) receptor mRNA. EP(2) receptor mRNA was not seen in the PGE(2) sensitive parts of the preoptic area. Although approximately half of the Fos-immunoreactive neurons also expressed EP(1) receptor mRNA, EP(1) mRNA expression was weak and its distribution was so diffuse in the preoptic area that it did not represent a specific relationship. In the paraventricular nucleus, EP(4) mRNA was found in most Fos-immunoreactive neurons and levels of EP(4) receptor expression increased after i.v. LPS. Our findings indicate that neurons expressing EP(4) receptor are activated during LPS-induced fever and suggest the involvement of EP(4) receptors in the production of fever.


Assuntos
Febre/fisiopatologia , Hipotálamo/metabolismo , Lipopolissacarídeos/metabolismo , Neurônios/metabolismo , Receptores de Prostaglandina E/genética , Animais , Contagem de Células , Dinoprostona/metabolismo , Febre/patologia , Hipotálamo/patologia , Lipopolissacarídeos/farmacologia , Masculino , Neurônios/patologia , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP1 , Receptores de Prostaglandina E Subtipo EP2 , Receptores de Prostaglandina E Subtipo EP3 , Receptores de Prostaglandina E Subtipo EP4
16.
J Neurosci ; 20(17): 6578-86, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10964963

RESUMO

Sympathetic preganglionic neurons receive direct, monosynaptic input from a series of well defined nuclei in the brainstem and the hypothalamus. These premotor cell groups coordinate sympathetic control with ongoing endocrine and behavioral response. However, it is not known precisely which populations of sympathetic premotor neurons are activated during specific responses, such as fever after intravenous lipopolysaccharide (LPS). We used the activation of c-fos protein expression in spinally projecting neurons during intravenous LPS fever as a model for examining the functional organization of this system. Intravenous LPS (5 microg/kg) induced Fos-like immunoreactivity in sympathetic preganglionic neurons in the spinal cord as well as several sympathetic premotor nuclei, including the paraventricular nucleus of the hypothalamus, rostral and caudal levels of the ventrolateral medulla, and the nucleus of the solitary tract. After injecting Fluorogold into the intermediolateral column at the T1-L1 spinal levels, neurons that were both Fos immunoreactive and retrogradely labeled were found only in the dorsal parvicellular division of the paraventricular nucleus in the hypothalamus, the rostral ventrolateral medulla (C1 adrenergic cell group), and the A5 noradrenergic cell group in the brainstem. The same pattern of double-labeling was seen from injections at each spinal cord level. These findings suggest that only a limited pool of hypothalamo-sympathetic neurons contribute to the fever response and that they may do so by contacting specific populations of preganglionic neurons that are distributed across a wide range of spinal levels. The anatomical specificity of the paraventriculo-spinal projection is thus functional rather than topographic.


Assuntos
Tronco Encefálico/fisiologia , Hipotálamo/fisiologia , Lipopolissacarídeos/farmacologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Estilbamidinas , Animais , Transporte Axonal , Tronco Encefálico/citologia , Vias Eferentes/citologia , Vias Eferentes/fisiologia , Corantes Fluorescentes , Lateralidade Funcional , Hipotálamo/citologia , Masculino , Neurônios/citologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Sistema Nervoso Simpático/fisiologia , Sinapses/fisiologia
17.
Front Neuroendocrinol ; 21(3): 263-307, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10882542

RESUMO

The discovery of leptin has enhanced understanding of the interrelationship between adipose energy stores and neuronal circuits in the brain involved in energy balance and regulation of the neuroendocrine axis. Leptin levels are dependent on the status of fat stores as well as changes in energy balance as a result of fasting and overfeeding. Although leptin was initially thought to serve mainly as an anti-satiety hormone, recent studies have shown that it mediates the adaptation to fasting. Furthermore, leptin has been implicated in the regulation of the reproductive, thyroid, growth hormone, and adrenal axes, independent of its role in energy balance. Although it is widely known that leptin acts on hypothalamic neuronal targets to regulate energy balance and neuroendocrine function, the specific neuronal populations mediating leptin action on feeding behavior and autonomic and neuroendocrine function are not well understood. In this review, we have discussed how leptin engages arcuate hypothalamic neurons expressing putative orexigenic peptides, e.g., neuropeptide Y and agouti-regulated peptide, and anorexigenic peptides, e.g., pro-opiomelanocortin (precursor of alpha-melanocyte-stimulating hormone) and cocaine- and amphetamine-regulated transcript. We show that leptin's effects on energy balance and the neuroendocrine axis are mediated by projections to other hypothalamic nuclei, e.g., paraventricular, lateral, and perifornical areas, as well as other sites in the brainstem, spinal cord, and cortical and subcortical regions.


Assuntos
Leptina/fisiologia , Sistemas Neurossecretores/fisiologia , Animais , Transporte Biológico , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Humanos , Leptina/metabolismo
18.
J Comp Neurol ; 423(2): 261-81, 2000 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-10867658

RESUMO

Leptin has profound effects on food intake, body weight, and neuroendocrine status. The lack of leptin results in hormonal and metabolic alterations and a dramatic increase in body weight. Leptin acts in the brain, especially in the hypothalamus; however, the central nervous system sites that respond to leptin have not been examined comprehensively. In this study, we explored systematically the distribution of leptin-activated neurons throughout the rat brain. Furthermore, we investigated the chemical identity of subsets of these leptin-activated cells. Fos-like immunoreactivity (Fos-IR) was investigated in the rat brain after two different doses of leptin (1.0 mg/kg and 5.0 mg/kg) at 2 hours and 6 hours after injections. The induction of Fos-IR was observed in hypothalamic nuclei, including the paraventricular nucleus (PVH), the retrochiasmatic area (RCA), the ventromedial nucleus (VMH), the dorsomedial nucleus (DMH), the arcuate nucleus (Arc), and the ventral premammillary nucleus (PMV). In addition, leptin-induced Fos-IR was found in several nuclei of the brainstem, including the superior lateral and external lateral subdivisions of the parabrachial nucleus (slPB and elPB, respectively), the supragenual nucleus, and the nucleus of the solitary tract (NTS). By using double-labeling immunohistochemistry or immunohistochemistry coupled with in situ hybridization, leptin-activated neurons were found that contained cocaine- and amphetamine-regulated transcript mRNA in several hypothalamic nuclei, including the RCA, Arc, DMH, and PMV. In the Arc and DMH, leptin-induced Fos-IR was observed in neurons that expressed neurotensin mRNA. Dynorphin neurons in the VMH and in the Arc also expressed Fos-IR. In the brainstem, we found that cholecystokinin neurons in the slPB and glucagon-like peptide-1 neurons in the NTS were activated by leptin. We also investigated the coexpression of Fos-IR and the long form of the leptin receptor (OBRb) mRNA. We found double-labeled neurons surrounding the median eminence and in the RCA, Arc, VMH, DMH, and PMV. However, in brainstem sites, very little OBRb mRNA was found; thus, there were very few double-labeled cells. These results suggest that leptin stimulates brain pathways containing neuropeptides that are involved in the regulation of energy balance, autonomic homeostasis, and neuroendocrine status.


Assuntos
Química Encefálica/fisiologia , Encéfalo/metabolismo , Proteínas de Caenorhabditis elegans , Ingestão de Alimentos/fisiologia , Leptina/metabolismo , Neurônios/química , Ratos Sprague-Dawley/metabolismo , Receptores de Superfície Celular , Animais , Encéfalo/citologia , Proteínas de Transporte/genética , Colecistocinina/genética , Metabolismo Energético/fisiologia , Encefalinas/genética , Homeostase/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Leptina/farmacologia , Masculino , Glicoproteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Neurotensina/genética , Precursores de Proteínas/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley/anatomia & histologia , Receptores para Leptina , Receptores Notch , Fatores de Tempo
20.
Endocrinology ; 140(11): 4923-31, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10537115

RESUMO

Leptin acts on specific populations of hypothalamic neurons to regulate feeding behavior, energy expenditure, and neuroendocrine function. It is not known, however, whether the same neural circuits mediate leptin action across its full biologic dose-response curve, which extends over a broad range, from low levels seen during starvation to high levels characteristic of obesity. Here, we show that the characteristic fall in leptin with fasting causes a rise in neuropeptide Y (NPY) messenger RNA (mRNA), as well as a fall in POMC and cocaine and amphetamine-regulated transcript (CART) mRNAs. Sc infusion of leptin sufficient to maintain plasma levels within the physiologic range during the fast prevents changes in the expression of these peptides, as well as changes in neuroendocrine function, demonstrating that multiple neural circuits are highly sensitive to small changes in leptin within its low physiologic range. In contrast, a modest elevation of plasma leptin above the normal fed range by constant sc infusion, which produced marked reduction in food intake and body weight, decreased NPY mRNA in the arcuate hypothalamic nucleus but did not affect the levels of mRNAs encoding the anorexigenic peptides alpha-MSH, CART or CRH. These results suggest that the dose response characteristics of leptin on hypothalamic target neurons at the level of mRNA expression are variable, with some neurons (e.g. NPY) responding across a broad dose range and others (e.g. POMC and CART) showing a limited response within the low range. These results further suggest that the central targets of leptin that mediate the transition from starvation to the fed state may be distinct from those that mediate the response to overfeeding and obesity.


Assuntos
Hipotálamo/fisiologia , Leptina/fisiologia , Neurônios/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal/efeitos dos fármacos , Hormônio Liberador da Corticotropina/genética , Ingestão de Alimentos/efeitos dos fármacos , Jejum , Regulação da Expressão Gênica/efeitos dos fármacos , Leptina/administração & dosagem , Leptina/deficiência , Masculino , Proteínas do Tecido Nervoso/genética , Neuropeptídeo Y/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , alfa-MSH/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...