Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sci Transl Med ; 14(645): eabm2311, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35348368

RESUMO

The successful development of several coronavirus disease 2019 (COVID-19) vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants that are able to evade vaccine-induced neutralizing antibodies, real-world vaccine efficacy has begun to show differences across the two approved mRNA platforms, BNT162b2 and mRNA-1273; these findings suggest that subtle variation in immune responses induced by the BNT162b2 and mRNA-1273 vaccines may confer differential protection. Given our emerging appreciation for the importance of additional antibody functions beyond neutralization, we profiled the postboost binding and functional capacity of humoral immune responses induced by the BNT162b2 and mRNA-1273 vaccines in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to variants of concern. However, differences emerged across epitope-specific responses, with higher concentrations of receptor binding domain (RBD)- and N-terminal domain-specific IgA observed in recipients of mRNA-1273. Antibodies eliciting neutrophil phagocytosis and natural killer cell activation were also increased in mRNA-1273 vaccine recipients as compared to BNT162b2 recipients. RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector functions induced across the mRNA vaccines. These data provide insights into potential differences in protective immunity conferred by these vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
2.
PLoS Biol ; 20(2): e3001531, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143473

RESUMO

Identifying the potential for SARS-CoV-2 reinfection is crucial for understanding possible long-term epidemic dynamics. We analysed longitudinal PCR and serological testing data from a prospective cohort of 4,411 United States employees in 4 states between April 2020 and February 2021. We conducted a multivariable logistic regression investigating the association between baseline serological status and subsequent PCR test result in order to calculate an odds ratio for reinfection. We estimated an odds ratio for reinfection ranging from 0.14 (95% CI: 0.019 to 0.63) to 0.28 (95% CI: 0.05 to 1.1), implying that the presence of SARS-CoV-2 antibodies at baseline is associated with around 72% to 86% reduced odds of a subsequent PCR positive test based on our point estimates. This suggests that primary infection with SARS-CoV-2 provides protection against reinfection in the majority of individuals, at least over a 6-month time period. We also highlight 2 major sources of bias and uncertainty to be considered when estimating the relative risk of reinfection, confounders and the choice of baseline time point, and show how to account for both in reinfection analysis.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Reinfecção/imunologia , Adolescente , Adulto , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Estudos Prospectivos , Reinfecção/prevenção & controle , SARS-CoV-2/imunologia , Estudos Soroepidemiológicos , Fatores de Tempo , Estados Unidos/epidemiologia , Local de Trabalho/estatística & dados numéricos , Adulto Jovem
3.
mBio ; 13(1): e0214121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073738

RESUMO

As public health guidelines throughout the world have relaxed in response to vaccination campaigns against SARS-CoV-2, it is likely that SARS-CoV-2 will remain endemic, fueled by the rise of more infectious SARS-CoV-2 variants. Moreover, in the setting of waning natural and vaccine immunity, reinfections have emerged across the globe, even among previously infected and vaccinated individuals. As such, the ability to detect reexposure to and reinfection by SARS-CoV-2 is a key component for global protection against this virus and, more importantly, against the potential emergence of vaccine escape mutations. Accordingly, there is a strong and continued need for the development and deployment of simple methods to detect emerging hot spots of reinfection to inform targeted pandemic response and containment, including targeted and specific deployment of vaccine booster campaigns. In this study, we identify simple, rapid immune biomarkers of reinfection in rhesus macaques, including IgG3 antibody levels against nucleocapsid and FcγR2A receptor binding activity of anti-RBD antibodies, that are recapitulated in human reinfection cases. As such, this cross-species analysis underscores the potential utility of simple antibody titers and function as price-effective and scalable markers of reinfection to provide increased resolution and resilience against new outbreaks. IMPORTANCE As public health and social distancing guidelines loosen in the setting of waning global natural and vaccine immunity, a deeper understanding of the immunological response to reexposure and reinfection to this highly contagious pathogen is necessary to maintain public health. Viral sequencing analysis provides a robust but unrealistic means to monitor reinfection globally. The identification of scalable pathogen-specific biomarkers of reexposure and reinfection, however, could significantly accelerate our capacity to monitor the spread of the virus through naive and experienced hosts, providing key insights into mechanisms of disease attenuation. Using a nonhuman primate model of controlled SARS-CoV-2 reexposure, we deeply probed the humoral immune response following rechallenge with various doses of viral inocula. We identified virus-specific humoral biomarkers of reinfection, with significant increases in antibody titer and function upon rechallenge across a range of humoral features, including IgG1 to the receptor binding domain of the spike protein of SARS-CoV-2 (RBD), IgG3 to the nucleocapsid protein (N), and FcγR2A receptor binding to anti-RBD antibodies. These features not only differentiated primary infection from reexposure and reinfection in monkeys but also were recapitulated in a sequencing-confirmed reinfection patient and in a cohort of putatively reinfected humans that evolved a PCR-positive test in spite of preexisting seropositivity. As such, this cross-species analysis using a controlled primate model and human cohorts reveals increases in antibody titers as promising cross-validated serological markers of reinfection and reexposure.


Assuntos
COVID-19 , Reinfecção , Animais , Humanos , Macaca mulatta , SARS-CoV-2 , Imunoglobulina G , Anticorpos Antivirais , Anticorpos Neutralizantes
4.
Immunity ; 55(2): 355-365.e4, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35090580

RESUMO

SARS-CoV-2 mRNA vaccines confer robust protection against COVID-19, but the emergence of variants has generated concerns regarding the protective efficacy of the currently approved vaccines, which lose neutralizing potency against some variants. Emerging data suggest that antibody functions beyond neutralization may contribute to protection from the disease, but little is known about SARS-CoV-2 antibody effector functions. Here, we profiled the binding and functional capacity of convalescent antibodies and Moderna mRNA-1273 COVID-19 vaccine-induced antibodies across SARS-CoV-2 variants of concern (VOCs). Although the neutralizing responses to VOCs decreased in both groups, the Fc-mediated responses were distinct. In convalescent individuals, although antibodies exhibited robust binding to VOCs, they showed compromised interactions with Fc-receptors. Conversely, vaccine-induced antibodies also bound robustly to VOCs but continued to interact with Fc-receptors and mediate antibody effector functions. These data point to a resilience in the mRNA-vaccine-induced humoral immune response that may continue to offer protection from SARS-CoV-2 VOCs independent of neutralization.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Antivirais/imunologia , COVID-19/metabolismo , COVID-19/prevenção & controle , Receptores Fc/metabolismo , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Adulto , Anticorpos Neutralizantes/imunologia , Reações Cruzadas/imunologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Adulto Jovem
5.
Viruses ; 13(11)2021 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-34835041

RESUMO

Obesity is a key correlate of severe SARS-CoV-2 outcomes while the role of obesity on risk of SARS-CoV-2 infection, symptom phenotype, and immune response remain poorly defined. We examined data from a prospective SARS-CoV-2 cohort study to address these questions. Serostatus, body mass index, demographics, comorbidities, and prior COVID-19 compatible symptoms were assessed at baseline and serostatus and symptoms monthly thereafter. SARS-CoV-2 immunoassays included an IgG ELISA targeting the spike RBD, multiarray Luminex targeting 20 viral antigens, pseudovirus neutralization, and T cell ELISPOT assays. Our results from a large prospective SARS-CoV-2 cohort study indicate symptom phenotype is strongly influenced by obesity among younger but not older age groups; we did not identify evidence to suggest obese individuals are at higher risk of SARS-CoV-2 infection; and remarkably homogenous immune activity across BMI categories suggests immune protection across these groups may be similar.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/complicações , COVID-19/imunologia , Obesidade/complicações , Obesidade/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , Adulto , Fatores Etários , Índice de Massa Corporal , COVID-19/epidemiologia , COVID-19/fisiopatologia , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Fatores de Risco , SARS-CoV-2/imunologia , Adulto Jovem
6.
Sci Immunol ; 6(64): eabj2901, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652962

RESUMO

The introduction of vaccines has inspired hope in the battle against SARS-CoV-2. However, the emergence of viral variants, in the absence of potent antivirals, has left the world struggling with the uncertain nature of this disease. Antibodies currently represent the strongest correlate of immunity against SARS-CoV-2, thus we profiled the earliest humoral signatures in a large cohort of acutely ill (survivors and nonsurvivors) and mild or asymptomatic individuals with COVID-19. Although a SARS-CoV-2­specific immune response evolved rapidly in survivors of COVID-19, nonsurvivors exhibited blunted and delayed humoral immune evolution, particularly with respect to S2-specific antibodies. Given the conservation of S2 across ß-coronaviruses, we found that the early development of SARS-CoV-2­specific immunity occurred in tandem with preexisting common ß-coronavirus OC43 humoral immunity in survivors, which was also selectively expanded in individuals that develop a paucisymptomatic infection. These data point to the importance of cross-coronavirus immunity as a correlate of protection against COVID-19.


Assuntos
COVID-19/imunologia , Reações Cruzadas , Imunidade Humoral , SARS-CoV-2/imunologia , Adolescente , Estudos de Coortes , Coronavirus Humano OC43/imunologia , Progressão da Doença , Humanos , Switching de Imunoglobulina , Receptores Fc/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Sobreviventes , Adulto Jovem
7.
Aerosp Med Hum Perform ; 92(7): 597-602, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503635

RESUMO

BACKGROUND: The National Aeronautics and Space Administration (NASA) Flight Crew Health Stabilization Program (HSP) was historically implemented to minimize infectious disease transmission to astronauts in the immediate prelaunch period. The first ever commercial application and adaptation of the NASA HSP was implemented during the Crew Demo-2 mission in the time of the Coronavirus disease 2019 (COVID-19) pandemic. This article details and discusses the first commercial implementation and adaptation of the HSP prior to the Crew Demo-2 launch.METHODS: This is a retrospective descriptive analysis of the application of NASA disease prevention protocols for human spaceflight during the COVID-19 pandemic. In the context of the pandemic, extra precautions added to the HSP included daily symptom surveys completed by Primary Contacts of the crew, COVID-19 RT-PCR testing, and improved quarantine protocols.RESULTS: Of the 91 SpaceX Primary Contacts who completed a total of 2720 daily symptom surveys prior to launch, 22 individuals (24.2) and 198 surveys (7.3) returned positive for potential symptoms of COVID-19. Two individuals were removed due to symptoms indistinguishable from COVID-19. Through this survey, systematic quarantine, and PCR testing, the Crew Demo-2 mission was successful with no known infectious diseases transmitted.CONCLUSIONS: Overall, the commercial implementation of the NASA Health Stabilization Program by SpaceX with adjustments required during the COVID-19 pandemic was a success, with protocols allowing identification and removal of potentially infectious persons from the program. The principles of the HSP may provide an adequate infectious disease playbook for commercial spaceflight operations going forward.Petersen E, Pattarini JM, Mulcahy RA, Beger SB, Mitchell MR, Hu YD, Middleton KN, Frazier W, Mormann B, Esparza H, Asadi A, Musk ER, Alter G, Nilles E, Menon AS. Adapting disease prevention protocols for human spaceflight during COVID-19. Aerosp Med Hum Perform. 2021; 92(7):597602.


Assuntos
COVID-19 , Voo Espacial , Humanos , Pandemias , Estudos Retrospectivos , SARS-CoV-2
8.
bioRxiv ; 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34494026

RESUMO

The successful development of several COVID-19 vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants, able to evade vaccine induced neutralizing antibodies, real world vaccine efficacy has begun to show differences across the mRNA platforms, suggesting that subtle variation in immune responses induced by the BNT162b2 and mRNA1273 vaccines may provide differential protection. Given our emerging appreciation for the importance of additional antibody functions, beyond neutralization, here we profiled the postboost binding and functional capacity of the humoral response induced by the BNT162b2 and mRNA-1273 in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to WT SARS-CoV-2 and VOCs. However, differences emerged across epitopespecific responses, with higher RBD- and NTD-specific IgA, as well as functional antibodies (ADNP and ADNK) in mRNA-1273 vaccine recipients. Additionally, RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector function induced across the mRNA vaccines, providing novel insights into potential differences in protective immunity generated across these vaccines in the setting of newly emerging VOCs.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-458247

RESUMO

The successful development of several COVID-19 vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants, able to evade vaccine induced neutralizing antibodies, real world vaccine efficacy has begun to show differences across the mRNA platforms, suggesting that subtle variation in immune responses induced by the BNT162b2 and mRNA1273 vaccines may provide differential protection. Given our emerging appreciation for the importance of additional antibody functions, beyond neutralization, here we profiled the postboost binding and functional capacity of the humoral response induced by the BNT162b2 and mRNA-1273 in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to WT SARS-CoV-2 and VOCs. However, differences emerged across epitopespecific responses, with higher RBD- and NTD-specific IgA, as well as functional antibodies (ADNP and ADNK) in mRNA-1273 vaccine recipients. Additionally, RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector function induced across the mRNA vaccines, providing novel insights into potential differences in protective immunity generated across these vaccines in the setting of newly emerging VOCs.

10.
bioRxiv ; 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34013263

RESUMO

The introduction of vaccines has inspired new hope in the battle against SARS-CoV-2. However, the emergence of viral variants, in the absence of potent antivirals, has left the world struggling with the uncertain nature of this disease. Antibodies currently represent the strongest correlate of immunity against COVID-19, thus we profiled the earliest humoral signatures in a large cohort of severe and asymptomatic COVID-19 individuals. While a SARS-CoV-2-specific immune response evolved rapidly in survivors of COVID-19, non-survivors exhibited blunted and delayed humoral immune evolution, particularly with respect to S2-specific antibody evolution. Given the conservation of S2 across ß-coronaviruses, we found the early development of SARS-CoV-2-specific immunity occurred in tandem with pre-existing common ß-coronavirus OC43 humoral immunity in survivors, which was selectively also expanded in individuals that develop paucisymptomatic infection. These data point to the importance of cross-coronavirus immunity as a correlate of protection against COVID-19.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256609

RESUMO

Identifying the extent of SARS-CoV-2 reinfection is crucial for understanding possible long-term epidemic dynamics. We analysed longitudinal PCR and serological testing data from a prospective cohort of 4411 US employees in four states between April 2020 and February 2021. We conducted a multivariable logistic regression investigating the association between baseline serological status and subsequent PCR test result in order to calculate an odds ratio for reinfection. We estimated an adjusted odds ratio of 0.09 (95% CI: 0.005 - 0.48) for reinfection, implying that the presence of SARS-CoV-2 antibodies at baseline is associated with around 91% reduced odds of a subsequent PCR positive test. This suggests that primary infection with SARS-CoV-2 provides protection against reinfection in the majority of individuals, at least over a sixth month time period. We also highlight two major sources of bias and uncertainty to be considered when estimating reinfection risk, confounders and the choice of baseline time point, and show how to account for both in our analysis.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-443609

RESUMO

The introduction of vaccines has inspired new hope in the battle against SARS-CoV-2. However, the emergence of viral variants, in the absence of potent antivirals, has left the world struggling with the uncertain nature of this disease. Antibodies currently represent the strongest correlate of immunity against COVID-19, thus we profiled the earliest humoral signatures in a large cohort of severe and asymptomatic COVID-19 individuals. While a SARS-CoV-2-specific immune response evolved rapidly in survivors of COVID-19, non-survivors exhibited blunted and delayed humoral immune evolution, particularly with respect to S2-specific antibody evolution. Given the conservation of S2 across {beta}-coronaviruses, we found the early development of SARS-CoV-2-specific immunity occurred in tandem with pre-existing common {beta}-coronavirus OC43 humoral immunity in survivors, which was selectively also expanded in individuals that develop paucisymptomatic infection. These data point to the importance of cross-coronavirus immunity as a correlate of protection against COVID-19.

13.
Nat Commun ; 12(1): 1018, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589636

RESUMO

Antibodies serve as biomarkers of infection, but if sustained can confer long-term immunity. Yet, for most clinically approved vaccines, binding antibody titers only serve as a surrogate of protection. Instead, the ability of vaccine induced antibodies to neutralize or mediate Fc-effector functions is mechanistically linked to protection. While evidence has begun to point to persisting antibody responses among SARS-CoV-2 infected individuals, cases of re-infection have begun to emerge, calling the protective nature of humoral immunity against this highly infectious pathogen into question. Using a community-based surveillance study, we aimed to define the relationship between titers and functional antibody activity to SARS-CoV-2 over time. Here we report significant heterogeneity, but limited decay, across antibody titers amongst 120 identified seroconverters, most of whom had asymptomatic infection. Notably, neutralization, Fc-function, and SARS-CoV-2 specific T cell responses were only observed in subjects that elicited RBD-specific antibody titers above a threshold. The findings point to a switch-like relationship between observed antibody titer and function, where a distinct threshold of activity-defined by the level of antibodies-is required to elicit vigorous humoral and cellular response. This response activity level may be essential for durable protection, potentially explaining why re-infections occur with SARS-CoV-2 and other common coronaviruses.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , COVID-19/sangue , Feminino , Humanos , Imunidade Humoral/imunologia , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Vacinas Virais/imunologia , Adulto Jovem
14.
medRxiv ; 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33200139

RESUMO

Obesity is a key correlate of severe SARS-CoV-2 outcomes while the role of obesity on risk of SARS-CoV-2 infection, symptom phenotype, and immune response are poorly defined. We examined data from a prospective SARS-CoV-2 cohort study to address these questions. Serostatus, body mass index, demographics, comorbidities, and prior COVID-19 compatible symptoms were assessed at baseline and serostatus and symptoms monthly thereafter. SARS-CoV-2 immunoassays included an IgG ELISA targeting the spike RBD, multiarray Luminex targeting 20 viral antigens, pseudovirus neutralization, and T cell ELISPOT assays. Our results from a large prospective SARS-CoV-2 cohort study indicate symptom phenotype is strongly influenced by obesity among younger but not older age groups; we did not identify evidence to suggest obese individuals are at higher risk of SARS-CoV-2 infection; and, remarkably homogenous immune activity across BMI categories suggests natural- and vaccine-induced protection may be similar across these groups.

15.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20229724

RESUMO

Obesity is a key correlate of severe SARS-CoV-2 outcomes while the role of obesity on risk of SARS-CoV-2 infection, symptom phenotype, and immune response are poorly defined. We examined data from a prospective SARS-CoV-2 cohort study to address these questions. Serostatus, body mass index, demographics, comorbidities, and prior COVID-19 compatible symptoms were assessed at baseline and serostatus and symptoms monthly thereafter. SARS-CoV-2 immunoassays included an IgG ELISA targeting the spike RBD, multiarray Luminex targeting 20 viral antigens, pseudovirus neutralization, and T cell ELISPOT assays. Our results from a large prospective SARS-CoV-2 cohort study indicate symptom phenotype is strongly influenced by obesity among younger but not older age groups; we did not identify evidence to suggest obese individuals are at higher risk of SARS-CoV-2 infection; and, remarkably homogenous immune activity across BMI categories suggests natural- and vaccine-induced protection may be similar across these groups.

16.
J Neurosci ; 39(16): 3057-3069, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30777885

RESUMO

An animal's survival depends on finding food and the memory of food and contexts are often linked. Given that the hippocampus is required for spatial and contextual memory, it is reasonable to expect related coding of space and food stimuli in hippocampal neurons. However, relatively little is known about how the hippocampus responds to tastes, the most central sensory property of food. In this study, we examined the taste-evoked responses and spatial firing properties of single units in the dorsal CA1 hippocampal region as male rats received a battery of taste stimuli differing in both chemical composition and palatability within a specific spatial context. We identified a subset of hippocampal neurons that responded to tastes, some of which were place cells. These taste and place responses had a distinct interaction: taste-responsive cells tended to have less spatially specific firing fields and place cells only responded to tastes delivered inside their place field. Like neurons in the amygdala and lateral hypothalamus, hippocampal neurons discriminated between tastes predominantly on the basis of palatability, with taste selectivity emerging concurrently with palatability-relatedness; these responses did not reflect movement or arousal. However, hippocampal taste responses emerged several hundred milliseconds later than responses in other parts of the taste system, suggesting that the hippocampus does not influence real-time taste decisions, instead associating the hedonic value of tastes with a particular context. This incorporation of taste responses into existing hippocampal maps could be one way that animals use past experience to locate food sources.SIGNIFICANCE STATEMENT Finding food is essential for animals' survival and taste and context memory are often linked. Although hippocampal responses to space and contexts have been well characterized, little is known about how the hippocampus responds to tastes. Here, we identified a subset of hippocampal neurons that discriminated between tastes based on palatability. Cells with stronger taste responses typically had weaker spatial responses and taste responses were confined to place cells' firing fields. Hippocampal taste responses emerged later than in other parts of the taste system, suggesting that the hippocampus does not influence taste decisions, but rather associates the hedonic value of tastes consumed within a particular context. This could be one way that animals use past experience to locate food sources.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Percepção Espacial/fisiologia , Percepção Gustatória/fisiologia , Animais , Masculino , Memória/fisiologia , Ratos , Ratos Long-Evans
17.
IEEE Trans Biomed Eng ; 62(9): 2208-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25850081

RESUMO

This paper explores the development of biomechanical models for evaluating a new class of passive mechanical implants for orthopedic surgery. The proposed implants take the form of passive engineered mechanisms, and will be used to improve the functional attachment of muscles to tendons and bone by modifying the transmission of forces and movement inside the body. Specifically, we present how two types of implantable mechanisms may be modeled in the open-source biomechanical software OpenSim. The first implant, which is proposed for hand tendon-transfer surgery, differentially distributes the forces and movement from one muscle across multiple tendons. The second implant, which is proposed for knee-replacement surgery, scales up the forces applied to the knee joint by the quadriceps muscle. This paper's key innovation is that such mechanisms have never been considered before in biomechanical simulation modeling and in surgery. When compared with joint function enabled by the current surgical practice of using sutures to make the attachment, biomechanical simulations show that the surgery with 1) the differential mechanism (tendon network) implant improves the fingers' ability to passively adapt to an object's shape significantly during grasping tasks (2.74× as measured by the extent of finger flexion) for the same muscle force, and 2) the force-scaling implant increases knee-joint torque by 84% for the same muscle force. The critical significance of this study is to provide a methodology for the design and inclusion of the implants into biomechanical models and validating the improvement in joint function they enable when compared with current surgical practice.


Assuntos
Modelos Biológicos , Músculo Esquelético/fisiologia , Próteses e Implantes , Tendões/fisiologia , Fenômenos Biomecânicos , Dedos/fisiologia , Dedos/cirurgia , Humanos , Articulação do Joelho/fisiologia , Articulação do Joelho/cirurgia , Músculo Esquelético/cirurgia , Procedimentos Ortopédicos/instrumentação , Desenho de Prótese , Tendões/cirurgia
19.
Clin Geriatr Med ; 11(3): 391-402, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7585386

RESUMO

Non-institutional long-term care is a broad, poorly defined, rapidly developing field. The need for it, the technologic ability to provide it, and the amount of money spent on it are all growing. Reconciling the public's reluctance to support social programs with the inevitable overlap of social and medical needs in the care of the frail elderly presents a serious challenge in formulating policy. Medical directors of programs in non-institutional long-term care will have to face governmental constraints and will be responsible for developing and implementing new policy in the future.


Assuntos
Serviços de Assistência Domiciliar/organização & administração , Assistência de Longa Duração/organização & administração , Diretores Médicos/organização & administração , Papel do Médico , Idoso , Idoso Fragilizado , Política de Saúde , Necessidades e Demandas de Serviços de Saúde , Cuidados Paliativos na Terminalidade da Vida/organização & administração , Humanos , Descrição de Cargo , Medicare Part A , Mecanismo de Reembolso , Estados Unidos
20.
Clin Geriatr Med ; 11(3): 419-32, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7585388

RESUMO

The nursing home reform amendments passed by Congress in 1987 (known as OBRA 87) have several sections that are relevant to medical practice and medical direction in the nursing home. The regulations and interpretive guides specify the medical director's role, physician services, resident assessments, resident rights, and restrictions on the use of chemical and physical restraints. This article provides the nursing home attending physician and medical director with basic information to help bring medical services into regulatory compliance.


Assuntos
Fiscalização e Controle de Instalações/legislação & jurisprudência , Reforma dos Serviços de Saúde/legislação & jurisprudência , Casas de Saúde/organização & administração , Diretores Médicos/organização & administração , Idoso , Tratamento Farmacológico/normas , Avaliação Geriátrica , Humanos , Defesa do Paciente/legislação & jurisprudência , Papel do Médico , Guias de Prática Clínica como Assunto , Restrição Física/legislação & jurisprudência , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...