Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37937832

RESUMO

The rapid warming of the Arctic is threatening the demise of its glaciers and their associated ecosystems. Therefore, there is an urgent need to explore and understand the diversity of genomes resident within glacial ecosystems endangered by human-induced climate change. In this study we use genome-resolved metagenomics to explore the taxonomic and functional diversity of different habitats within glacier-occupied catchments. Comparing different habitats within such catchments offers a natural experiment for understanding the effects of changing habitat extent or even loss upon Arctic microbiota. Through binning and annotation of metagenome-assembled genomes (MAGs) we describe the spatial differences in taxon distribution and their implications for glacier-associated biogeochemical cycling. Multiple taxa associated with carbon cycling included organisms with the potential for carbon monoxide oxidation. Meanwhile, nitrogen fixation was mediated by a single taxon, although diverse taxa contribute to other nitrogen conversions. Genes for sulphur oxidation were prevalent within MAGs implying the potential capacity for sulphur cycling. Finally, we focused on cyanobacterial MAGs, and those within cryoconite, a biodiverse microbe-mineral granular aggregate responsible for darkening glacier surfaces. Although the metagenome-assembled genome of Phormidesmis priestleyi, the cyanobacterium responsible for forming Arctic cryoconite was represented with high coverage, evidence for the biosynthesis of multiple vitamins and co-factors was absent from its MAG. Our results indicate the potential for cross-feeding to sustain P. priestleyi within granular cryoconite. Taken together, genome-resolved metagenomics reveals the vulnerability of glacier-associated microbiota to the deletion of glacial habitats through the rapid warming of the Arctic.


Assuntos
Camada de Gelo , Microbiota , Humanos , Camada de Gelo/química , Camada de Gelo/microbiologia , Metagenoma , Microbiota/genética , Biodiversidade , Enxofre
2.
Front Microbiol ; 11: 980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508790

RESUMO

We investigated the interactions of air and snow over one entire winter accumulation period as well as the importance of chemical markers in a pristine free-tropospheric environment to explain variation in a microbiological dataset. To overcome the limitations of short term bioaerosol sampling, we sampled the atmosphere continuously onto quartzfiber air filters using a DIGITEL high volume PM10 sampler. The bacterial and fungal communities, sequenced using Illumina MiSeq, as well as the chemical components of the atmosphere were compared to those of a late season snow profile. Results reveal strong dynamics in the composition of bacterial and fungal communities in air and snow. In fall the two compartments were similar, suggesting a strong interaction between them. The overlap diminished as the season progressed due to an evolution within the snowpack throughout winter and spring. Certain bacterial and fungal genera were only detected in air samples, which implies that a distinct air microbiome might exist. These organisms are likely not incorporated in clouds and thus not precipitated or scavenged in snow. Although snow appears to be seeded by the atmosphere, both air and snow showed differing bacterial and fungal communities and chemical composition. Season and alpha diversity were major drivers for microbial variability in snow and air, and only a few chemical markers were identified as important in explaining microbial diversity. Air microbial community variation was more related to chemical markers than snow microbial composition. For air microbial communities Cl-, TC/OC, SO4 2-, Mg2+, and Fe/Al, all compounds related to dust or anthropogenic activities, were identified as related to bacterial variability while dust related Ca2+ was significant in snow. The only common driver for snow and air was SO4 2-, a tracer for anthropogenic sources. The occurrence of chemical compounds was coupled with boundary layer injections in the free troposphere (FT). Boundary layer injections also caused the observed variations in community composition and chemistry between the two compartments. Long-term monitoring is required for a more valid insight in post-depositional selection in snow.

3.
Front Microbiol ; 10: 2278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636618

RESUMO

Artificial snow production is a crucial part of modern skiing resorts in Austria and globally, and will develop even more so with changing precipitation patterns and a warming climate trend. Producing artificial snow requires major investments in energy, water, infrastructure and manpower for skiing resorts. In addition to appropriate meteorological conditions, the efficiency of artificial snow production depends on heterogeneous ice-nucleation, which can occur at temperatures as high as -2°C when induced by specific bacterial ice nucleating particles (INPs). We aimed to investigate the presence, source and ice nucleating properties of these particles in the water cycle of an alpine ski resort in Obergurgl, Tyrol, Austria. We sampled artificial snow, river water, water pumped from a storage pond and compared it to samples collected from fresh natural snow and aged piste snow from the area. Particles from each sampled system were characterized in order to determine their transport mechanisms at a ski resort. We applied a physical droplet freezing assay [DRoplet Ice Nuclei Counter Zurich (DRINCZ)] to heated and unheated samples to characterize the biological and non-biological component of IN-activity. Bacterial abundance and community structure of the samples was obtained using quantitative PCR and Illumina Mi-Seq Amplicon Sequencing, and their chemical properties were determined by liquid ion-chromatography, energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results show the flow of biological and inorganic material from the river to the slopes, an uptake of new microorganisms through the air and the piping, and possible proliferation or introduction of ice nucleation active biological particles in aged piste snow. Natural snow, as the first stage in this system, had the lowest amount of ice nucleation active particles and the least amount of biological and mineral particles in general, yet shares some microbial characteristics with fresh artificial snow.

4.
Biology (Basel) ; 6(2)2017 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481257

RESUMO

Atmospheric dispersal of bacteria is increasingly acknowledged as an important factor influencing bacterial community biodiversity, biogeography and bacteria-human interactions, including those linked to human health. However, knowledge about patterns in microbial aerobiology is still relatively scarce, and this can be attributed, in part, to a lack of consensus on appropriate sampling and analytical methodology. In this study, three different methods were used to investigate aerial biodiversity over Svalbard: impaction, membrane filtration and drop plates. Sites around Svalbard were selected due to their relatively remote location, low human population, geographical location with respect to air movement and the tradition and history of scientific investigation on the archipelago, ensuring the presence of existing research infrastructure. The aerial bacterial biodiversity found was similar to that described in other aerobiological studies from both polar and non-polar environments, with Proteobacteria, Actinobacteria, and Firmicutes being the predominant groups. Twelve different phyla were detected in the air collected above Svalbard, although the diversity was considerably lower than in urban environments elsewhere. However, only 58 of 196 bacterial genera detected were consistently present, suggesting potentially higher levels of heterogeneity. Viable bacteria were present at all sampling locations, showing that living bacteria are ubiquitous in the air around Svalbard. Sampling location influenced the results obtained, as did sampling method. Specifically, impaction with a Sartorius MD8 produced a significantly higher number of viable colony forming units (CFUs) than drop plates alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...