Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Genet Eng Biotechnol ; 21(1): 14, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757585

RESUMO

BACKGROUND: Flavonoid natural dyes have gained attention because they are nontoxic and eco-friendly. However, they do not work effectively with artificial fibers and require the use of mordants, which are considered as hazardous chemicals. Laccase enzyme catalyzes the oxidation of phenols, forming phenoxyl radicals that undergo a further polymerization process. So, laccase can oxidize flavonoid dyes, and it can be used instead of harmful mordants in flavonoid dye fixation on cotton fabrics. Laccases also are involved in a variety of metabolic processes, and they have anti-proliferative effects toward HepG2 and MCF-7 tumor cells. RESULTS: Among fifteen fungal isolates, the fungus Ceratorhiza hydrophila isolated from the submerged plant Myriophyllum spicatum was selected as the most potent laccase producer. Optimization of the production medium resulted in a 9.9-fold increase in laccase productivity. The partially purified Ceratorhiza hydrophila laccase could successfully improve the affinity of cotton fabrics toward quercetin (flavonoid) dye with excellent color fastness properties. The partially purified laccase also showed anti-proliferative activity against HepG2 and MCF-7 tumor cells. However, high laccase concentration is required to estimate IC50. CONCLUSIONS: Ceratorhiza hydrophila MK387081 is an excellent laccase producer. The partially purified laccase from Ceratorhiza hydrophila can be used in textile dyeing and printing processes as a safer alternative to the conventional hazardous mordants. Also, it can be used in preparation of cancer treatment drugs. However, further studies are needed to investigate IC50 for both cell types at higher laccase concentrations.

2.
J Fungi (Basel) ; 8(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36354915

RESUMO

Chaetomiaceae fungi are ascosporulating fungi whose importance as human pathogens has been frequently ignored. In the current study, a new isolate of the genus Subramaniula was described. The fungus was isolated from the soil of Wadi Om Nefa'a, Hurghada in the Red Sea Governorate, Egypt. Previously, Subramaniula were misidentified as Papulaspora spp. According to molecular analysis, the fungus was identified as Subramaniula asteroids OP484336. Remarkably, this species has been found among other fungi responsible for keratitis in humans and has been recorded for the first time in Egypt. Analysing the Subramaniula asteroids' metabolic profile was one of the objectives of the current study because little is known about this family's metabolome. The fungal extract's untargeted metabolic profiling was carried out by gas chromatography-mass spectroscopy (GC/MS), 1H and 1H-HSQC nuclear magnetic resonance (NMR) data, and their corresponding databases. In total, fifty-nine metabolites have been reported in the polar and non-polar extracts. The majority of polar metabolites are amino acids and carbohydrates. The non-polar extract's main components were 1-dodecanamine, N,N-dimethyl-, 1-tetradecanamine, N,N-dimethyl-, and 9-octadecenoic acid ethyl ester. The current study is the first to provide a metabolic profile of Subramaniula asteroids, which can be used in chemotaxonomical classification, antifungal drug development, and biological activity investigation of the studied species.

3.
Mycobiology ; 50(2): 110-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571857

RESUMO

The goal of the present study was to investigate the antibacterial properties, enzyme production, and metabolic profiling of a new Ceratorhiza hydrophila strain isolated from the submerged aquatic plant Myriophyllum spicatum. Furthermore, the fungus' morphological characterization and DNA sequencing have been described. The fungus has been identified and submitted to the GenBank as Ceratorhiza hydrophila isolate EG19 and the fungus ID is MK387081. The enzyme analyses showed its ability to produce protease and cellulase enzymes. According to the CSLI standard, the ethyl acetate extract of C. hydrophila showed intermediate antibacterial activity against Streptococcus pneumonia, Micrococcus luteus, and Staphylococcus aureus. Metabolic profiling has been carried out using 700 MHz NMR spectroscopy. Based on the 1H and 1H-13C heteronuclear single quantum coherence (HSQC) NMR data and NMR databases, 23 compounds have been identified. The identified metabolites include 31% amino acids, 9% sugars, 9% amines, 4% sugar alcohols, and 4% alkaloids. This is the first report for the metabolic characterization of C. hydrophila, which gave preliminary information about the fungus. It is expected that our findings not only will pave the way to other perspectives in enormous applications using C. hydrophila as a new promising source of antimicrobial agents and essential metabolites, but also it will be valuable in the classification and chemotaxonomy of the species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...