Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cells ; 11(5)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269433

RESUMO

Toxoplasma gondii (T. gondii) is an opportunistic protozoan that can cause brain infection and other serious health consequences in immuno-compromised individuals. This parasite has a remarkable ability to cross biological barriers and exploit the host cell microenvironment to support its own survival and growth. Recent advances in label-free spectroscopic imaging techniques have made it possible to study biological systems at a high spatial resolution. In this study, we used conventional Fourier-transform infrared (FTIR) microspectroscopy and synchrotron-based FTIR microspectroscopy to analyze the chemical changes that are associated with infection of human brain microvascular endothelial cells (hBMECs) by T. gondii (RH) tachyzoites. Both FTIR microspectroscopic methods showed utility in revealing the chemical alterations in the infected hBMECs. Using a ZnS hemisphere device, to increase the numerical aperture, and the synchrotron source to increase the brightness, we obtained spatially resolved spectra from within a single cell. The spectra extracted from the nucleus and cytosol containing the tachyzoites were clearly distinguished. RNA sequencing analysis of T. gondii-infected and uninfected hBMECs revealed significant changes in the expression of host cell genes and pathways in response to T. gondii infection. These FTIR spectroscopic and transcriptomic findings provide significant insight into the molecular changes that occur in hBMECs during T. gondii infection.


Assuntos
Toxoplasma , Toxoplasmose , Células Endoteliais , Interações Hospedeiro-Parasita , Humanos , Transcriptoma
2.
Pathogens ; 9(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872199

RESUMO

In this work, the effects of the protozoan Neospora caninum on the bioenergetics, chemical composition, and elemental content of human brain microvascular endothelial cells (hBMECs) were investigated. We showed that N. caninum can impair cell mitochondrial (Mt) function and causes an arrest in host cell cycling at S and G2 phases. These adverse effects were also associated with altered expression of genes involved in Mt energy metabolism, suggesting Mt dysfunction caused by N. caninum infection. Fourier Transform Infrared (FTIR) spectroscopy analysis of hBMECs revealed alterations in the FTIR bands as a function of infection, where infected cells showed alterations in the absorption bands of lipid (2924 cm-1), amide I protein (1649 cm-1), amide II protein (1537 cm-1), nucleic acids and carbohydrates (1092 cm-1, 1047 cm-1, and 939 cm-1). By using quantitative synchrotron radiation X-ray fluorescence (µSR-XRF) imaging and quantification of the trace elements Zn, Cu and Fe, we detected an increase in the levels of Zn and Cu from 3 to 24 h post infection (hpi) in infected cells compared to control cells, but there were no changes in the level of Fe. We also used Affymetrix array technology to investigate the global alteration in gene expression of hBMECs and rat brain microvascular endothelial cells (rBMVECs) in response to N. caninum infection at 24 hpi. The result of transcriptome profiling identified differentially expressed genes involved mainly in immune response, lipid metabolism and apoptosis. These data further our understanding of the molecular events that shape the interaction between N. caninum and blood-brain-barrier endothelial cells.

3.
Brain Res ; 1746: 147002, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32592740

RESUMO

Toxoplasma gondii can cause parasitic encephalitis, a life-threatening infection that predominately occurs in immunocompromised individuals. T. gondii has the ability to invade the brain, but the mechanisms by which this parasite crosses the blood-brain-barrier (BBB) remain incompletely understood. The present study reports the changes associated with infection and replication of T. gondii within human brain microvascular endothelial cells (BMECs) in vitro. Our results indicated that exposure to T. gondii had an adverse impact on the function and integrity of the BMECs - through induction of cell cycle arrest, disruption of the BMEC barrier integrity, reduction of cellular viability and vitality, depolarization of the mitochondrial membrane potential, increase of the DNA fragmentation, and alteration of the expression of immune response and tight junction genes. The calcium channel/P-glycoprotein transporter inhibitor verapamil was effective in inhibiting T. gondii crossing the BMECs in a dose-dependent manner. The present study showed that T. gondii can compromise several functions of BMECs and demonstrated the ability of verapamil to inhibit T. gondii crossing of the BMECs in vitro.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Bloqueadores dos Canais de Cálcio/farmacologia , Células Endoteliais/efeitos dos fármacos , Toxoplasmose/fisiopatologia , Verapamil/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Toxoplasmose/metabolismo , Toxoplasmose/patologia
4.
Parasit Vectors ; 6: 24, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23351811

RESUMO

BACKGROUND: The brain is the most commonly affected organ during Neospora caninum infection but the mechanisms utilized by this protozoan parasite for traversal of the blood-brain barrier (BBB) are not yet understood. Herein, we investigate the cellular pathogenicity of N. caninum infection on bioenergetics of human brain microvascular endothelial cells (HBMECs), a fundamental component of the BBB. METHODS: We tracked the growth kinetics of N. caninum in HBMECs. Focusing on cell bioenergetics, oxygen consumption rate (OCR) was determined using Clark electrode system and mitochondrial membrane potential (ΔΨm) was evaluated using DePsipher staining by fluorescence microscopy in the presence and absence of infection. RESULTS: HBMECs provided a receptive environment for parasite proliferation. N. caninum tachyzoites were able to invade and replicate within HBMECs without significantly altering cell proliferation rate, as measured with the MTT assay, up to 24 hr post infection (pi). The oxygen consumption rate (OCR) was significantly inhibited (p < 0.001) by 10 mM glucose [from -2.26±0.23 to -0.6±0.21 nmol 106 cell min-1 and from -0.29±0.09 to -0.16±0.1 nmol 106 cell min-1 for uninfected HBMECs and free N. Caninum tachyzoites, respectively]. After normalization for DNA content the basal OCR did not differ between two host cell types: HBMECs and K562. The OCR of HBMECs was significantly elevated 24 hr pi in the absence of substrate, in 10 mM glucose and in the presence of a tetramethyl-p-phenylenediamine (TMPD)/ascorbate redox shuttle. Although quantitatively similar results were observed for uninfected K562 cells, there was no effect on their OCR 24 hr pi with N. caninum under any of the above substrate conditions. 6mM azide abolished OCR in all situations. Mitochondrial staining with DePsipher indicated no change in their membrane potential (Δψm) up to 24 hr pi. CONCLUSIONS: N. caninum is able to grow in HBMECs without markedly disrupting their normal proliferation or mitochondrial integrity. However, it is associated with an increase in infected cell respiration. Whether this increase reflects numeric addition of the parasites own respiration or results from an additional energy demand upon the host cell remains to be elucidated.


Assuntos
Encéfalo/parasitologia , Células Endoteliais/fisiologia , Células Endoteliais/parasitologia , Metabolismo Energético , Neospora/crescimento & desenvolvimento , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Potenciais da Membrana , Microscopia de Fluorescência , Membranas Mitocondriais/fisiologia , Neospora/patogenicidade , Consumo de Oxigênio , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...