Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 150: 107574, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936049

RESUMO

Mitochondrial dynamics have pillar roles in several diseases including cancer. Cancer cell survival is monitored by mitochondria which impacts several cellular functions such as cell metabolism, calcium signaling, and ROS production. The equilibrium of death and survival rate of mitochondria is important for healthy cellular processes. Whereas inhibition of mitochondrial metabolism and dynamics can have crucial regulatory decisions between cell survival and death. The steady rate of physiological flux of both mitochondrial fission and fusion is strongly related to the preservation of cellular bioenergetics. Dysregulation of mitochondrial dynamics including fission and fusion is a critical machinery in cells accompanied by crosstalk in cancer progression and resistance. Many cancer cells express high levels of Drp-1 to induce cancer cell invasion, metastasis and chemoresistance including breast cancer, liver cancer, pancreatic cancer, and colon cancer. Targeting Drp-1 by inhibitors such as Midivi-1 helps to enhance the responsiveness of cancer cells towards chemotherapy. The review showed Drp-1 linked processes such as mitochondrial dynamics and relationship with cancer, invasion, and chemoresistance along with computational assessing of all publicly available Drp-1 inhibitors. Drp1-IN-1, Dynole 34-2, trimethyloctadecylammonium bromide, and Schaftoside showed potential inhibitory effects on Drp-1 as compared to standard Mdivi- 1. This emerging approach may have extensive strength in the context of cancer development and chemoresistance and further work is needed to aid in more effective cancer management.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Dinaminas , Neoplasias , Humanos , Dinaminas/antagonistas & inibidores , Dinaminas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Animais , Quinazolinonas/farmacologia , Quinazolinonas/química , Quinazolinonas/síntese química
2.
Front Immunol ; 15: 1277074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915405

RESUMO

Garlic (Allium sativum L.) is a widely abundant spice, known for its aroma and pungent flavor. It contains several bioactive compounds and offers a wide range of health benefits to humans, including those pertaining to nutrition, physiology, and medicine. Therefore, garlic is considered as one of the most effective disease-preventive diets. Many in vitro and in vivo studies have reported the sulfur-containing compounds, allicin and ajoene, for their effective anticancer, anti-diabetic, anti-inflammatory, antioxidant, antimicrobial, immune-boosting, and cardioprotective properties. As a rich natural source of bioactive compounds, including polysaccharides, saponins, tannins, linalool, geraniol, phellandrene, ß-phellandrene, ajoene, alliin, S-allyl-mercapto cysteine, and ß-phellandrene, garlic has many therapeutic applications and may play a role in drug development against various human diseases. In the current review, garlic and its major bioactive components along with their biological function and mechanisms of action for their role in disease prevention and therapy are discussed.


Assuntos
Alho , Alho/química , Humanos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Ácidos Sulfínicos/uso terapêutico , Ácidos Sulfínicos/farmacologia , Dissulfetos
3.
Front Genet ; 15: 1302527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482381

RESUMO

Lung cancer is a crucial global issue, with more than one million deaths annually. While smoking is considered the main etiology of the disease, several genetic variants are associated with it. Alterations in vitamin D pathway genes have also been studied in regards to lung cancer, but the findings have been inconclusive. We here present a systematic review and meta-analysis of seven genes in this pathway: CYP2R1, CYP27B1, CYP24A1, CYP3A4, CYP3A5, GC, and VDR. Four databases (PubMed, Scopus, Cochrane Library, and Web of Science (WOS) databases) were searched. From these, 16 eligible case-control studies comprising 6,206 lung cancer cases and 7,272 health controls were obtained. These studies were subjected to comprehensive data extraction and quality scoring, and the pooled odds ratio with a 95% confidence interval was calculated to estimate the effect of each variant along with heterogeneity analysis and a risk of bias assessment. Our meta-analysis revealed an association between CYP3A4 (rs2740574) and lung cancer in the allelic, heterozygous, and dominant models. In addition, both VDR (Fok1: rs2228570) and VDR (Cdx-2: rs11568820) displayed a protective role in lung cancer development in the heterozygous and dominant models. Furthermore, VDR (Taq1: rs731236) showed a decreased risk of lung cancer in the allelic, homozygous, and recessive models. Similarly, VDR (BsmI: rs1544410) had a positive effect on lung cancer risk when subjected to allelic and recessive models. Our meta-analysis revealed the lack of association of CYP2R1 (rs10741657), CYP27B1 (rs3782130), CYP27B1 (rs10877012), CYP24A1 (rs6068816), CYP24A1 (rs4809960), CYP3A5 (rs776746), GC (rs7041), GC (rs4588), and VDR (ApaI: rs7975232) with lung cancer. Our work revealed that CYP3A4 (rs2740574) can represent an independent risk factor for lung cancer. This conclusion can aid better personalized medicine for lung cancer management, while further assessment for genetic variants of CYP3A4, CYP27B1, CYP24A1, GC, and VDR is still required to address more robust evidence.

4.
Cancer Cell Int ; 24(1): 89, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419070

RESUMO

Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.

5.
BMC Public Health ; 24(1): 395, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321448

RESUMO

Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = - 12.58 kcal/mol), emetine (S = - 11.65 kcal/mol), pimozide (S = - 11.29 kcal/mol), carvedilol (S = - 11.28 kcal/mol), mebeverine (S = - 11.14 kcal/mol), cepharanthine (S = - 11.06 kcal/mol), hydroxyzin (S = - 10.96 kcal/mol), astemizole (S = - 10.81 kcal/mol), sertindole (S = - 10.55 kcal/mol), and bepridil (S = - 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = - 10.43 kcal/mol), making them better options for inhibition.


Assuntos
COVID-19 , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Esfingomielina Fosfodiesterase/metabolismo , Ceramidas/metabolismo , Esfingolipídeos
6.
Biochem Genet ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38219243

RESUMO

The renin-angiotensin-aldosterone system has an indispensable function in the uteroplacental circulation, placental growth, and blood pressure optimization. The angiotensin I converting enzyme (ACE) gene is a critical integrator for electrolyte balance, and water retention, along with inhibiting preeclampsia. The main goal of this pertaining study is to assess the contribution of ACE*(Ins/Del) variant with the susceptibility for preeclampsia with focus on the severity of the disease among gestational hypertensive women. This retrospective study included 225 participants [125 PE gestational women, and 100 normotensive healthy controls] matching with age, and geographical region. PE women classified into 82 early-onset PE women, accompanied with 43 late-onset PE women. Additionally, PE women categorized into 59 mild PE women, together with 66 severe PE women. The genotyping and characterization of ACE*(Ins/Del) variant were applied using the PCR technique. Our findings indicated higher frequency of the ACE*(Del/Del) genotype and ACE*(D allele) with elevated risk of preeclampsia compared to normotensive controls under recessive (OR = 2.09, and p-value = 0.007), and allelic (OR = 1.75, and p-value = 0.012) models. In addition, testing logistic regression revealed that the levels of endothelin-1 and malondialdehyde exposed significant difference for the ACE*(Del/Del) genotype among early-onset and late-onset PE women (p-value = 0.024, and 0.23, respectively). Furthermore, carriers of the ACE*(Del/Del) genotype observed statistically significant with lower sodium concentrations among severe PE women (p-value = 0.034). The ACE*(Del/Del) genotype and ACE*(D allele) were associated with increased risk preeclampsia among gestational women. Furthermore, early-onset PE and late-onset PE were correlated with endothelin-1 and malondialdehyde concentrations among Egyptian women.

7.
J Pers Med ; 13(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37373948

RESUMO

Numerous reports have explored the roles of different genetic variants in miRNA biogenesis mechanisms and the progression of various types of carcinomas. The goal of this study is to explore the association between XPO5*rs34324334 and RAN*rs14035 gene variants and susceptibility to hepatocellular carcinoma (HCC). In a cohort of 234 participants (107 HCC patients and 127 unrelated cancer-free controls) from the same geographic region, we characterized allelic discrimination using PCR-RFLP and performed subgroup analysis and multivariate regression. We found that the frequency of the XPO5*rs34324334 (A) variant was correlated with elevated risk of HCC under allelic (OR = 10.09, p-value < 0.001), recessive (OR = 24.1, p-value < 0.001), and dominant (OR = 10.1, p-value < 0.001) models. A/A genotype was associated with hepatitis C cirrhosis (p-value = 0.012), ascites (p-value = 0.003), and higher levels of alpha-fetoproteins (p-value = 0.011). Carriers of the RAN*rs14035 (T) variant were more likely to develop HCC under allelic (OR = 1.76, p-value = 0.003) and recessive (OR = 3.27, p-value < 0.001) models. Our results suggest that XPO5*rs34324334 and RAN*rs14035 variants are independent risk factors for developing HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...