Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(12): 1673-1681, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116446

RESUMO

SHP2 has emerged as an important target for oncology small-molecule drug discovery. As a nonreceptor tyrosine phosphatase within the MAPK pathway, it has been shown to control cell growth, differentiation, and oncogenic transformation. We used structure-based design to find a novel class of potent and orally bioavailable SHP2 inhibitors. Our efforts led to the discovery of the 5-azaquinoxaline as a new core for developing this class of compounds. Optimization of the potency and properties of this scaffold generated compound 30, that exhibited potent in vitro SHP2 inhibition and showed excellent in vivo efficacy and pharmacokinetic profile.

2.
J Am Chem Soc ; 141(28): 11059-11070, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31283877

RESUMO

MYC is one of the most important oncogenes and is overexpressed in the majority of cancers. G-Quadruplexes are noncanonical four-stranded DNA secondary structures that have emerged as attractive cancer-specific molecular targets for drug development. The G-quadruplex formed in the proximal promoter region of the MYC oncogene (MycG4) has been shown to be a transcriptional silencer that is amenable to small-molecule targeting for MYC suppression. Indenoisoquinolines are human topoisomerase I inhibitors in clinical testing with improved physicochemical and biological properties as compared to the clinically used camptothecin anticancer drugs topotecan and irinotecan. However, some indenoisoquinolines with potent anticancer activity do not exhibit strong topoisomerase I inhibition, suggesting a separate mechanism of action. Here, we report that anticancer indenoisoquinolines strongly bind and stabilize MycG4 and lower MYC expression levels in cancer cells, using various biochemical, biophysical, computer modeling, and cell-based methods. Significantly, a large number of active indenoisoquinolines cause strong MYC downregulation in cancer cells. Structure-activity relationships of MycG4 recognition by indenoisoquinolines are investigated. In addition, the analysis of indenoisoquinoline analogues for their MYC-inhibitory activity, topoisomerase I-inhibitory activity, and anticancer activity reveals a synergistic effect of MYC inhibition and topoisomerase I inhibition on anticancer activity. Therefore, this study uncovers a novel mechanism of action of indenoisoquinolines as a new family of drugs targeting the MYC promoter G-quadruplex for MYC suppression. Furthermore, the study suggests that dual targeting of MYC and topoisomerase I may serve as a novel strategy for anticancer drug development.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Regulação para Baixo/efeitos dos fármacos , Indenos/farmacologia , Isoquinolinas/farmacologia , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Inibidores da Topoisomerase I/farmacologia , Sítios de Ligação/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Humanos , Indenos/química , Isoquinolinas/química , Estrutura Molecular , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/química
3.
J Med Chem ; 61(23): 10440-10462, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30460842

RESUMO

The present account describes the discovery and development of a new benzo[ c]pyrrolo[2,3- h][1,6]naphthyridin-5-one (BPN) JAK inhibitory chemotype that has produced selective JAK inhibitors. Sequential palladium chemistry was optimized for the rapid access to a focused library of derivatives to explore the structure-activity relationships of the new scaffold. Several compounds from the series displayed potencies in the low nanomolar range against the four members of the JAK family with various selectivity profiles. Compound 20a, with an azetidine amide side chain, showed the best selectivity for JAK1 kinase vs JAK2, JAK3, and TYK2, with low nanomolar potency (IC50 = 3.4 nM). On the other hand, BPNs 17b and 18 had good general activity against the JAK family with excellent kinome selectivity profiles. Many of the new BPNs inhibited JAK3-mediated STAT-5 phosphorylation, the production of inflammatory cytokines, and the proliferation of primary T cells. Moreover, BPN 17b showed very similar in vivo results to tofacitinib in a rheumatoid arthritis animal model.


Assuntos
Descoberta de Drogas , Inibidores de Janus Quinases/química , Inibidores de Janus Quinases/farmacologia , Paládio/química , Pirróis/química , Pirróis/farmacologia , Células CACO-2 , Catálise , Humanos , Inibidores de Janus Quinases/metabolismo , Inibidores de Janus Quinases/farmacocinética , Janus Quinases/química , Janus Quinases/metabolismo , Modelos Moleculares , Permeabilidade , Conformação Proteica , Pirróis/metabolismo , Pirróis/farmacocinética , Distribuição Tecidual
4.
Org Lett ; 20(17): 5228-5232, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30102543

RESUMO

An intramolecular version of the Catellani reaction was optimized for one-step synthesis of bulky N-substituted benzo[1,6]naphthyridinones with good to excellent yields. The optimized reaction of N-substituted o-bromobenzamides with 4-bromoquinolines features a wide substrate scope and yields of up to 98%. The employment of aryl bromides under carefully optimized conditions instead of the usual aryl iodides enhances the scope of the reaction.

5.
Bioorg Chem ; 80: 276-287, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29966874

RESUMO

Two series of 2-aminopyridine derivatives 6-17 and tyrphostin AG17 analogs 18-22 bearing 4-methylbenzenesulfonamide moiety were designed and synthesized as anticancer compounds. The synthesized compounds were biologically evaluated for their cytotoxic activity against human breast cancer cell line MCF-7. From 2-aminopyridine and tyrphostin AG17 series, compounds 14, 16 and 20 showed the best activities with IC50 values of 20.4, 18.3 and 26.3 µM, respectively compared to E7070 IC50 36.3 µM. Further biological evaluation of 14, 16 and 20 against cyclin dependent kinase-2 (CDK2) revealed good inhibitory activity with IC50 of 2.53, 1.79 and 2.92 µM, respectively compared to roscovitine IC50 0.43 µM. Additionally, capability of γ-radiation to augment the cytotoxic activity of 14, 16 and 20 was studied and showed a dramatic increase in the cell killing effect at lower concentrations after irradiation. Docking was used to investigate the possible binding modes of compounds 14, 16 and 20 inside the active site of CDK2 enzyme.


Assuntos
Antineoplásicos/síntese química , Quinase 2 Dependente de Ciclina/metabolismo , Desenho de Fármacos , Inibidores de Proteínas Quinases/síntese química , Sulfonamidas/química , Tolueno/análogos & derivados , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Raios gama , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia , Tolueno/química , Tolueno/metabolismo , Tolueno/farmacologia
6.
Mol Cancer Ther ; 17(8): 1694-1704, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29748210

RESUMO

Contrary to other anticancer targets, topoisomerase I (TOP1) is targeted by only one chemical class of FDA-approved drugs: topotecan and irinotecan, the derivatives of the plant alkaloid, camptothecin. The indenoisoquinolines LMP400, LMP744, and LMP776 are novel noncamptothecin TOP1 inhibitors in clinical trial, which overcome the limitations of camptothecins. To further improve metabolic stability, their methoxy groups have been replaced by fluorine, as in the fluoroindenoisoquinolines NSC 781517 (LMP517), NSC 779135 (LMP135), and NSC 779134 (LMP134). We tested the induction and stability of TOP1 cleavage complexes (TOP1cc), and the induction and persistence of DNA damage measured by histone H2AX phosphorylation (γH2AX) compared with their parent compounds LMP744 and LMP776 in leukemia CCRF-CEM and colon carcinoma HCT116 cells. The fluoroindenoisoquinolines induced TOP1cc and γH2AX at nanomolar concentrations, and at higher levels than the parent indenoisoquinolines. The fluoroindenoisoquinoline LMP135 showed greater antitumor activity than topotecan in small-cell lung cancer cell H82 xenografts. It was also more potent than topotecan in the NCI-60 cancer cell line panel. Bioinformatics tools (http://discover.nci.nih.gov/cellminercdb) were used to investigate the following: (i) the correlations of fluoroindenoisoquinolines activity with other drugs, and (ii) genomic determinants of response in the NCI-60. The activity of the fluoroindenoisoquinolines was mostly correlated with camptothecin derivatives and the parent indenoisoquinolines, consistent with TOP1 targeting. Genomic analyses and activity assays in CCRF-CEM SLFN11-deleted cells showed that SLFN11 expression is a dominant determinant of response to LMP135. This study shows the potential value of the fluoroindenoisoquinolines for further development as novel anticancer agents targeting TOP1. Mol Cancer Ther; 17(8); 1694-704. ©2018 AACR.


Assuntos
Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Inibidores da Topoisomerase I/uso terapêutico , Animais , Camptotecina/farmacologia , Feminino , Humanos , Camundongos , Camundongos Nus , Inibidores da Topoisomerase I/farmacologia
7.
Org Biomol Chem ; 16(1): 108-118, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29199735

RESUMO

A similarity search and molecular modeling study suggested the 2'-aryl-2-arylbenzothiazole framework as a novel scaffold for the design of COX-2-selective inhibitors. Conventional Suzuki coupling conditions did not furnish the designed compounds in good yield from 2'-bromo-2-arylbenzothiazole as the starting material. A novel ligand-free Suzuki-Miyaura coupling methodology was developed for sterically hindered 2'-bromo-2-arylbenzothiazoles. The reaction depends on the coordination properties of the benzothiazole ring nitrogen, which is involved in the formation of a palladacyclic intermediate that was synthesized independently and converted to the final product. The new method provides good to excellent yields (up to 99%) with favorable functional group tolerability. Six compounds had potencies in the submicromolar range against COX-2 and higher selectivity for COX-2 vs. COX-1 compared to the currently used drug celecoxib. Molecular modeling was used to investigate the possible binding mode with COX-2.


Assuntos
Benzotiazóis/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Benzotiazóis/síntese química , Benzotiazóis/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
8.
J Med Chem ; 60(13): 5364-5376, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28657311

RESUMO

The 7-azaindenoisoquinolines are cytotoxic topoisomerase I (Top1) inhibitors. Previously reported representatives bear a 3-nitro group. The present report documents the replacement of the potentially genotoxic 3-nitro group by 3-chloro and 3-fluoro substituents, resulting in compounds with high Top1 inhibitory activities and potent cytotoxicities in human cancer cell cultures and reduced lethality in an animal model. Some of the new Top1 inhibitors also possess moderate inhibitory activities against tyrosyl-DNA phosphodiesterase 1 (TDP1) and tyrosyl-DNA phosphodiesterase 2 (TDP2), two enzymes that are involved in DNA damage repair resulting from Top1 inhibitors, and they produce significantly more DNA damage in cancer cells than in normal cells. Eighteen of the new compounds had cytotoxicity mean-graph midpoint (MGM) GI50 values in the submicromolar (0.033-0.630 µM) range. Compounds 16b and 17b are the most potent in human cancer cell cultures with MGM GI50 values of 0.063 and 0.033 µM, respectively. Possible binding modes to Top1 and TDP1were investigated by molecular modeling.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Desenho de Fármacos , Isoquinolinas/farmacologia , Inibidores da Topoisomerase I/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Clivagem do DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Células Tumorais Cultivadas , Peixe-Zebra
9.
J Infect Dev Ctries ; 11(4): 314-319, 2017 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-28459222

RESUMO

INTRODUCTION: Salmonella enterica serovars Enteritidis and Typhimurium represent the major serovars associated with human salmonellosis. Contamination of meat products with these serovars is considered the main source of infection. METHODOLOGY: In this study, 100 raw chicken meat samples were investigated for the presence of Salmonella spp., which were subsequently identified based on biochemical and serological tests as well as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) profile. Furthermore, the isolated serovars were examined using multiplex polymerase chain reaction (PCR) for the presence of virulence genes suspected to have a role in infection. RESULTS: S. Enteritidis was isolated from two samples (2%), while S. Typhimurium was isolated from three samples (3%) of chicken meat. Of the 17 examined virulence genes using multiplex PCR, the sitC, sopB, sifA, lpfC, spaN, sipB, invA, spiA, and msgA genes were detected in S. Enteritidis. However, the sitC, iroN, sopB, sifA, lpfC, spaN, sipB, invA, and tolC genes were successfully amplified in S. Typhimurium. CONCLUSIONS: The detection of S. Enteritidis and S. Typhimurium in meat, even at low incidence, has important implications. In addition, the data presented here is the first attempt to identify a wide range of virulence genes in Egyptian Salmonella isolates recovered from meat products. A strict public health and food safety regime is urgently needed in order to decrease the human health hazard risk associated with salmonellosis.


Assuntos
Contaminação de Alimentos , Carne/microbiologia , Salmonella enteritidis/isolamento & purificação , Salmonella typhimurium/isolamento & purificação , Animais , Técnicas Bacteriológicas , Galinhas , Egito , Humanos , Incidência , Reação em Cadeia da Polimerase Multiplex , Sorotipagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Virulência/análise
10.
J Med Chem ; 60(8): 3275-3288, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28418653

RESUMO

Tdp1 and Tdp2 are two tyrosyl-DNA phosphodiesterases that can repair damaged DNA resulting from topoisomerase inhibitors and a variety of other DNA-damaging agents. Both Tdp1 and Tdp2 inhibition could hypothetically potentiate the cytotoxicities of topoisomerase inhibitors. This study reports the successful structure-based design and synthesis of new 7-azaindenoisoquinolines that act as triple inhibitors of Top1, Tdp1, and Tdp2. Enzyme inhibitory data and cytotoxicity data from human cancer cell cultures establish that modification of the lactam side chain of the 7-azaindenoisoquinolines can modulate their inhibitory potencies and selectivities vs Top1, Tdp1, and Tdp2. Molecular modeling of selected target compounds bound to Top1, Tdp1, and Tdp2 was used to design the inhibitors and facilitate the structure-activity relationship analysis. The monitoring of DNA damage by γ-H2AX foci formation in human PBMCs (lymphocytes) and acute lymphoblastic leukemia CCRF-CEM cells documented significantly more DNA damage in the cancer cells vs normal cells.


Assuntos
Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/farmacologia , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/farmacologia , Células Cultivadas , Humanos , Relação Estrutura-Atividade
11.
J Med Chem ; 59(10): 4890-9, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27097152

RESUMO

Indenoisoquinoline topoisomerase I (Top1) inhibitors are a novel class of anticancer agents with two compounds in clinical trials. Recent metabolism studies of indotecan (LMP400) led to the discovery of the biologically active 2-hydroxylated analogue and 3-hydroxylated metabolite, thus providing strategically placed functional groups for the preparation of a variety of potential ester prodrugs of these two compounds. The current study details the design and synthesis of two series of indenoisoquinoline prodrugs, and it also reveals how substituents on the O-2 and O-3 positions of the A ring, which are next to the cleaved DNA strand in the drug-DNA-Top1 ternary cleavage complex, affect Top1 inhibitory activity and cytotoxicity. Many of the indenoisoquinoline prodrugs were very potent antiproliferative agents with GI50 values below 10 nM in a variety of human cancer cell lines.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Benzodioxóis/metabolismo , Benzodioxóis/farmacologia , Desenho de Fármacos , Isoquinolinas/metabolismo , Isoquinolinas/farmacologia , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Benzodioxóis/síntese química , Benzodioxóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Ratos , Relação Estrutura-Atividade
12.
Synth Commun ; 46(23): 1902-1908, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29056779

RESUMO

A novel indolophenanthridine ring system has been synthesized via the Schiff base-homophthalic anhydride cyclization followed by thionyl chloride-mediated dehydrogenation and intramolecular Friedel-Crafts acylation. This adds to the array of heterocyclic systems that are available through the cycloaddition reaction of imines with cyclic dicarboxylic acid anhydrides. The cytotoxicities of the indolophenanthridines were investigated in human cancer cell cultures, and the results documented significant antitumor activity in a variety of human cancer cell lines. This provides a new heterocyclic scaffold for anticancer drug design.

13.
Eur J Med Chem ; 61: 122-31, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23063746

RESUMO

This study is concerned with the implementation of structure-based techniques for the design of new heterocyclic compounds based on pseudosaccharine scaffold with protein kinase inhibition activity. This nucleus was exploited based on the well-known quinazoline core and its interactions with several protein kinases. Two series of compounds employing this new scaffold were synthesized and evaluated at enzymatic and cellular levels. Compound 9b displayed broad spectrum antiproliferative activity on NCI 60-cell lines panel with mean GI50 of 5.4 µM. Investigation of the molecular mechanism showed probable inhibitory activity against Src kinase.


Assuntos
Óxidos S-Cíclicos/síntese química , Óxidos S-Cíclicos/farmacologia , Desenho de Fármacos , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Óxidos S-Cíclicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Compostos de Fenilureia/química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
14.
PLoS One ; 7(11): e49284, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185312

RESUMO

This study provides a comprehensive computational procedure for the discovery of novel urea-based antineoplastic kinase inhibitors while focusing on diversification of both chemotype and selectivity pattern. It presents a systematic structural analysis of the different binding motifs of urea-based kinase inhibitors and the corresponding configurations of the kinase enzymes. The computational model depends on simultaneous application of two protocols. The first protocol applies multiple consecutive validated virtual screening filters including SMARTS, support vector-machine model (ROC = 0.98), Bayesian model (ROC = 0.86) and structure-based pharmacophore filters based on urea-based kinase inhibitors complexes retrieved from literature. This is followed by hits profiling against different extended electron distribution (XED) based field templates representing different kinase targets. The second protocol enables cancericidal activity verification by using the algorithm of feature trees (Ftrees) similarity searching against NCI database. Being a proof-of-concept study, this combined procedure was experimentally validated by its utilization in developing a novel series of urea-based derivatives of strong anticancer activity. This new series is based on 3-benzylbenzo[d]thiazol-2(3H)-one scaffold which has interesting chemical feasibility and wide diversification capability. Antineoplastic activity of this series was assayed in vitro against NCI 60 tumor-cell lines showing very strong inhibition of GI(50) as low as 0.9 uM. Additionally, its mechanism was unleashed using KINEX™ protein kinase microarray-based small molecule inhibitor profiling platform and cell cycle analysis showing a peculiar selectivity pattern against Zap70, c-src, Mink1, csk and MeKK2 kinases. Interestingly, it showed activity on syk kinase confirming the recent studies finding of the high activity of diphenyl urea containing compounds against this kinase. Allover, the new series, which is based on a new kinase scaffold with interesting chemical diversification capabilities, showed that it exhibits its "emergent" properties by perturbing multiple unexplored kinase pathways.


Assuntos
Algoritmos , Antineoplásicos/farmacologia , Descoberta de Drogas , Elétrons , Inibidores de Proteínas Quinases/farmacologia , Ureia/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/classificação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Humanos , Concentração Inibidora 50 , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Modelos Moleculares , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/classificação , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Máquina de Vetores de Suporte , Quinase Syk , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...