Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Commun Signal ; 15(1): 81-91, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33398720

RESUMO

Fibroblast growth factor 1 (FGF-1) is the first FGF family member, and it induces proliferation of fibroblasts and other types of the cells. However, recent studies are uncovering unexpected functions of this molecule. Our previous study redefined this growth factor as a catabolic molecule produced in cartilage upon metabolic insult. Indeed, FGF-1 was found to repress the gene expression of cellular communication network factor 2 (CCN2), which protects and regenerates cartilage, amplifying its own production through positive feedback regulation. In the present study, we investigated the molecular mechanism of this bipartite CCN2 repression and FGF1 activation by FGF-1 in chondrocytes. Repression of CCN2 and induction of FGF1 in human chondrocytic cells were both partly abolished by valproic acid, an inhibitor of histone deacetylase 1 (HDAC1), indicating the involvement of chromatin remodeling by histone acetylation in this system. In contrast, RNA degradation analysis suggested no contribution of post-transcriptional regulation of the mRNA stability to the effects conferred by FGF-1. Suspecting a regulation by a specific transcription factor, we next sought a candidate in silico from a large dataset. As a result, we found fork head box protein A1 (FOXA1) as the transcription factor that bound to both CCN2 and FGF1 loci. Functional analysis demonstrated that FOXA1 silencing significantly attenuated the CCN2 repression and FGF1 induction caused by FGF1. These findings collectively indicate that the bipartite regulation by FGF-1 is enabled by the combination of chromatin remodeling by HDACs and transcriptional modulation by FOXA1 with unknown transcriptional coactivators of opposite functionalities.

2.
Cancers (Basel) ; 12(5)2020 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429403

RESUMO

The tumor organoid (tumoroid) model in three-dimensional (3D) culture systems has been developed to reflect more closely the in vivo tumors than 2D-cultured tumor cells. Notably, extracellular vesicles (EVs) are efficiently collectible from the culture supernatant of gel-free tumoroids. Matrix metalloproteinase (MMP) 3 is a multi-functional factor playing crucial roles in tumor progression. However, roles of MMP3 within tumor growth and EVs have not unveiled. Here, we investigated the protumorigenic roles of MMP3 on integrities of tumoroids and EVs. We generated MMP3-knockout (KO) cells using the CRISPR/Cas9 system from rapidly metastatic LuM1 tumor cells. Moreover, we established fluorescent cell lines with palmitoylation signal-fused fluorescent proteins (tdTomato and enhanced GFP). Then we confirmed the exchange of EVs between cellular populations and tumoroids. LuM1-tumoroids released large EVs (200-1000 nm) and small EVs (50-200 nm) while the knockout of MMP3 resulted in the additional release of broken EVs from tumoroids. The loss of MMP3 led to a significant reduction in tumoroid size and the development of the necrotic area within tumoroids. MMP3 and CD9 (a category-1 EV marker tetraspanin protein) were significantly down-regulated in MMP3-KO cells and their EV fraction. Moreover, CD63, another member of the tetraspanin family, was significantly reduced only in the EVs fractions of the MMP3-KO cells compared to their counterpart. These weakened phenotypes of MMP3-KO were markedly rescued by the addition of MMP3-rich EVs or conditioned medium (CM) collected from LuM1-tumoroids, which caused a dramatic rise in the expression of MMP3, CD9, and Ki-67 (a marker of proliferating cells) in the MMP3-null/CD9-low tumoroids. Notably, MMP3 enriched in tumoroids-derived EVs and CM deeply penetrated recipient MMP3-KO tumoroids, resulting in a remarkable enlargement of solid tumoroids, while MMP3-null EVs did not. These data demonstrate that EVs can mediate molecular transfer of MMP3, resulting in increasing the proliferation and tumorigenesis, indicating crucial roles of MMP3 in tumor progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...