Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13761, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877054

RESUMO

Arid regions can benefit from using native desert plants, which require minimal freshwater and can aid in remediating soil phytotoxic metals (PTMs) from traffic emissions. In this study, we assessed the ability of three native desert plants-Pennisetum divisum, Tetraena qatarensis, and Brassica tournefortii-to accumulate phytotoxic metals (PTMs) in their different plant organs, including leaves, stems, and roots/rhizomes. The PTMs were analyzed in soil and plant samples collected from Dubai, United Arab Emirates (UAE). The results indicated significantly higher levels of PTMs on the soil surface than the subsurface layer. Brassica exhibited the highest concentrations of Fe and Zn, measuring 566.7 and 262.8 mg kg-1, respectively, while Tetraena accumulated the highest concentration of Sr (1676.9 mg kg-1) in their stems. In contrast, Pennisetum recorded the lowest concentration of Sr (21.0 mg kg-1), while Tetraena exhibited the lowest concentrations of Fe and Zn (22.5 and 30.1 mg kg-1) in their leaves. The roots of Pennisetum, Brassica, and Tetraena demonstrated the potential to accumulate Zn from the soil, with concentration factors (CF) of 1.75, 1.09, and 1.09, respectively. Moreover, Brassica exhibited the highest CF for Sr, measuring 2.34. Pennisetum, however, could not translocate PTMs from its rhizomes to other plant organs, as indicated by a translocation factor (TF) of 1. In contrast, Brassica effectively translocated the studied PTMs from its roots to the stem and leaves (except for Sr in the leaves). Furthermore, Pennisetum exclusively absorbed Zn from the soil into its leaves and stems, with an enrichment factor (EF) greater than 1. Brassica showed the ability to uptake the studied PTMs in its stem and leaves (except for Fe), while Tetraena primarily absorbed Sr and Zn into its stems. Based on the CF and TF results, Pennisetum appears to be a suitable species for phytostabilization of both Fe and Zn, while Brassica is well-suited for Sr and Zn polluted soils. Tetraena shows potential for Zn phytoremediation. These findings suggest that these plants are suitable for PTMs phytoextraction. Furthermore, based on the EF results, these plants can efficiently sequester PTMs.


Assuntos
Biodegradação Ambiental , Cidades , Poluentes do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Pennisetum/metabolismo , Clima Desértico , Solo/química , Raízes de Plantas/metabolismo , Folhas de Planta/metabolismo , Brassica/metabolismo , Brassica/crescimento & desenvolvimento , Metais Pesados/metabolismo , Metais Pesados/análise
2.
Sci Rep ; 12(1): 20319, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434075

RESUMO

The emergence of antibiotic-resistance genes (ARGs) by means of integrons in multidrug-resistant Acinetobacter baumannii (MDR A. baumannii) has become a significant challenge in the management of infections from this pathogen. In this paper, we report on the variable region of class 1 and 2 integrons observed in MDR A. baumanni isolates recovered from rivers in the Eastern Cape Province, South Africa. Class 1 and 2 integrons with their variable regions were evaluated with polymerase chain reaction techniques followed by sequencing. Antibiotic sensitivity testing, checkerboard assay, time-kill independent assay, and Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) were carried out using standard microbiological techniques. A total of fifty-six (56) isolates were examined, among which 45 (79%) tested positive for class 1 integron, and 7 (12.3%) had class 2 integron. None was found to be class 3 integron positive among the isolates. The variable region contained aadA1, aadA5, and aadA2 genes, which confer resistance against streptomycin and spectinomycin, aac(6')-Ib against amikacin/ tobramycin and dfrA17 genes against trimethoprim. The minimum inhibitory concentrations of the antimicrobials for one of the tested organisms were resistant against meropenem, colistin sodium methanesulfonate, tetracycline, ceftazidime, and ciprofloxacin (16, > 16, > 8, > 256, and 128 ug/mL respectively). The impact of colistin combined with quinolones (ciprofloxacin), with the FICIs (0.31) indicated synergistic effects against MDR A baumanni. However, when colistin was combined with meropenem and ceftazidime, additive effects with fractional inhibitory concentration (FIC) index ranging from 0.52 to 1 were observed. No antagonistic effect was evaluated among the examined isolates. ERIC-PCR analyses of A. baumanni isolates revealed significant genetic diversity, suggesting various sources of environmental contamination. We conclude that A. baumanni harbouring class 1 integrons in aquatic milieus are a significant source of ARGs and can transmit these elements to other organisms and consequently to man with significant public health implications.


Assuntos
Acinetobacter baumannii , Integrons , Humanos , Masculino , Integrons/genética , Colistina , Prevalência , Meropeném , Ceftazidima , África do Sul , Antibacterianos/farmacologia , Ciprofloxacina , Acinetobacter baumannii/genética , Enterobacteriaceae
3.
Antibiotics (Basel) ; 11(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36009959

RESUMO

One strategy for combating antimicrobial resistance in many infections is to combine antibacterial compounds to create combinations that outperform each molecule alone. In this study, we examine and study the inhibitory effect of combining two drugs belonging to different antibiotic classes to obtain a possible potentiating effect against some Enterobacteriaceae isolates harbouring integrons recovered from rivers and effluents of hospital and wastewater treatment plants in Eastern Cape Province, South Africa. These integrons could easily enable the isolates to acquire genes that confer additional resistance against conventional antibiotics. The minimum inhibitory concentration of the various antibiotics was determined using the broth microdilution, while the checkerboard method was used to determine the fractional inhibitory concentration indices (FICIs). A total of 26.3% (10/38) of the interactions were categorised as synergistic, while 73.7% (28/38) were indifferent. None of the combinations were antagonistic. The time-kill assays revealed all the synergistic interactions as bactericidal. Therefore, the combinations of gentamicin with tetracycline, ciprofloxacin, and ceftazidime against multidrug-resistant (MDR) Klebsiella pneumoniae, tetracycline-ceftazidime combination against MDR Escherichia coli, colistin combinations with ceftazidime and gentamicin, and tetracycline-gentamicin combinations against MDR Citrobacter freundii may be future therapeutic alternatives. Hence, the synergistic combinations reported in this study must be assessed further in vivo before their clinical applications.

4.
Environ Monit Assess ; 194(5): 339, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389105

RESUMO

There have been many global studies on the occurrence and distribution of pharmaceuticals and personal care products (PPCPs) in the aquatic resources, but reports on the effects of physicochemical properties of water on their concentrations are very scarce. The amounts and removal of these contaminants in various environmental media are dependent on these physicochemical properties, which include pH, temperature, electrical conductivity, salinity, turbidity, and dissolved oxygen. Here, we reviewed the influence of these properties on determination of PPCPs. Reports showed that increase in turbidity, electrical conductivity, and salinity gives increase in concentrations of PPCPs. Also, neutral pH gives higher PPCP concentrations, while decrease in temperature and dissolved oxygen gives low concentration of PPCPs. Nevertheless, it is quite challenging to ascertain the influence of water quality parameters on the PPCP concentration, as other factors like climate change, type of water, source of pollution, persistence, and dilution factor may have great influence on the concentration of PPCPs. Therefore, routine monitoring is suggested as most water quality parameters vary because of effects of climate change.


Assuntos
Cosméticos , Poluentes Químicos da Água , Cosméticos/análise , Monitoramento Ambiental , Oxigênio , Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Áreas Alagadas
5.
J Agric Food Chem ; 64(45): 8491-8498, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27771954

RESUMO

This study was done to identify pesticide-biodegrading microorganisms and to characterize degradation rates. Bacillus safensis strain FO-36bT, Bacillus subtilis subsp. inaquosorum strain KCTC13429T, and Bacillus cereus strain ATCC14579T were isolated from pesticide-polluted soil in Sudan, separately incubated with each pesticide with periodic samples drawn for GC and GC-MS. Pesticide biodegradation followed a biphasic model. α and ß half-lives (days) of chlorpyrifos, malathion, and dimethoate in B. safensis culture were 2.13, 4.76; 2.59, 5.66; and 9.5, 11.0, respectively. Values in B. subtilis and B. cereus cultures were 4.09, 9.45 and 4.33, 9.99 for chlorpyrifos; 2.99, 5.36 and 2.43, 4.71 for malathion; and 9.53, 15.11 and 4.16, 9.27 for dimethoate. No metabolite was detected in B. subtilis cultures, whereas a few were detected from B. safensis and B. cereus cultures. Bacterial efficiency can be ordered as B. safensis > B. subtilis > B. cereus for chlorpyrifos and B. cereus > B. subtilis > B. safensis for malathion and dimethoate.


Assuntos
Bacillus cereus/metabolismo , Bacillus/metabolismo , Clorpirifos/metabolismo , Dimetoato/metabolismo , Malation/metabolismo , Praguicidas/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Bacillus cereus/classificação , Bacillus cereus/genética , Bacillus cereus/isolamento & purificação , Biodegradação Ambiental , Filogenia , Sudão
6.
Plant Foods Hum Nutr ; 58(1): 63-74, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12859014

RESUMO

A field experiment was carried out to study the effect of cooking on protein solubility profiles of mycorrhizal inoculated, phosphorus and sulphur fertilized faba beans under two water regimes. The results indicated that cooking significantly (p < or = 0.05) increased the G3-glutelin fraction as well as the insoluble protein but significantly (p < or = 0.05) decreased the globulin and albumin fractions; prolamin, G1-glutelin and G2-glutelin fractions were slightly increased. Mycorrhizal inoculation and mycorrhiza + phosphorus + sulphur fertilization significantly (p < or = 0.05) increased albumin content. All fertilizer treatments significantly (p < or = 0.05) decreased the insoluble protein.


Assuntos
Culinária , Proteínas de Plantas/análise , Vicia faba/química , Proteínas Alimentares/análise , Fósforo , Proteínas de Plantas/química , Solubilidade , Enxofre , Vicia faba/crescimento & desenvolvimento , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...