Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 74: 26-37, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30665830

RESUMO

DNA fiber fluorography is widely employed to study the kinetics of DNA replication, but the usefulness of this approach has been limited by the lack of freely-available automated analysis tools. Quantification of DNA fibers usually relies on manual examination of immunofluorescence microscopy images, which is laborious and prone to inter- and intra-operator variability. To address this, we developed an unbiased, fully automated algorithm that quantifies length and color of DNA fibers from fluorescence microscopy images. Our fiber quantification method, termed FiberQ, is an open-source image processing tool based on edge detection and a novel segment splicing approach. Here, we describe the algorithm in detail, validate our results experimentally, and benchmark the analysis against manual assessments. Our implementation is offered free of charge to the scientific community under the General Public License.


Assuntos
Algoritmos , DNA/química , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência , Fatores de Tempo
2.
Cancer Res ; 78(19): 5561-5573, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30072396

RESUMO

Intrinsic and acquired resistance to cisplatin remains a primary hurdle to treatment of high-grade serous ovarian cancer (HGSOC). Cisplatin selectively kills tumor cells by inducing DNA crosslinks that block replicative DNA polymerases. Single-stranded DNA (ssDNA) generated at resulting stalled replication forks (RF) is bound and protected by heterotrimeric replication protein A (RPA), which then serves as a platform for recruitment and activation of replication stress response factors. Cells deficient in this response are characterized by extensive ssDNA formation and excessive RPA recruitment that exhausts the available pool of RPA, which (i) inhibits RPA-dependent processes such as nucleotide excision repair (NER) and (ii) causes catastrophic failure of blocked RF. Here, we investigated the influence of RPA availability on chemosensitivity using a panel of human HGSOC cell lines. Our data revealed a striking correlation among these cell lines between cisplatin sensitivity and the inability to efficiently repair DNA via NER, specifically during S phase. Such defects in NER were attributable to RPA exhaustion arising from aberrant activation of DNA replication origins during replication stress. Reduced RPA availability promoted Mre11-dependent degradation of nascent DNA at stalled RF in cell lines exhibiting elevated sensitivity to cisplatin. Strikingly, defective S-phase NER, RF instability, and cisplatin sensitivity could all be rescued by ectopic overexpression of RPA. Taken together, our findings indicate that RPA exhaustion represents a major determinant of cisplatin sensitivity in HGSOC cell lines.Significance: The influence of replication protein A exhaustion on cisplatin sensitivity harbors important implications toward improving therapy of various cancers that initially respond to platinum-based agents but later relapse due to intrinsic or acquired drug resistance. Cancer Res; 78(19); 5561-73. ©2018 AACR.


Assuntos
Cisplatino/farmacologia , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proteína de Replicação A/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , DNA de Cadeia Simples/genética , Feminino , Humanos , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...