Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 10(12): 4215-4224, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145169

RESUMO

Colloidal quantum dots (QDs) have become a versatile optoelectronic material for emitting and detecting light that can overcome the limitations of a range of electronic and photonic technology platforms. Photonic integrated circuits (PICs), for example, face the persistent challenge of combining active materials with passive circuitry ideally suited for guiding light. Here, we demonstrate the integration of photodiodes (PDs) based on PbS QDs on silicon nitride waveguides (WG). Analyzing planar QDPDs first, we argue that the main limitation WG-coupled QDPDs face is detector saturation induced by the high optical power density of the guided light. Using the cladding thickness and waveguide width as design parameters, we mitigate this issue, and we demonstrate WG-QDPDs with an external quantum efficiency of 67.5% at 1275 nm that exhibit a linear photoresponse for input powers up to 400 nW. In the next step, we demonstrate a compact infrared spectrometer by integrating these WG-QDPDs on the output channels of an arrayed waveguide grating demultiplexer. This work provides a path toward a low-cost PD solution for PICs, which are attractive for large-scale production.

2.
Nano Lett ; 19(8): 5452-5458, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31313928

RESUMO

Single-photon sources and detectors are indispensable building blocks for integrated quantum photonics, a research field that is seeing ever increasing interest for numerous applications. In this work, we implemented essential components for a quantum key distribution transceiver on a single photonic chip. Plasmonic antennas on top of silicon nitride waveguides provide Purcell enhancement with a concurrent increase of the count rate, speeding up the microsecond radiative lifetime of IR-emitting colloidal PbS/CdS quantum dots (QDs). The use of low-fluorescence silicon nitride, with a waveguide loss smaller than 1 dB/cm, made it possible to implement high extinction ratio optical filters and low insertion loss spectrometers. Waveguide-coupled superconducting nanowire single-photon detectors allow for low time-jitter single-photon detection. To showcase the performance of the components, we demonstrate on-chip lifetime spectroscopy of PbS/CdS QDs. The method developed in this paper is predicted to scale down to single QDs, and newly developed emitters can be readily integrated on the chip-based platform.

3.
Opt Express ; 26(5): 6046-6055, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529800

RESUMO

We demonstrate the fabrication and characterization of on-chip vertically-emitting SiNx/Au nanopatch cavities containing a monolayer of colloidal quantum dots. The fabrication process is based on electron-beam lithography and deterministically positions both the cavity and the emitters within the cavity with an accuracy of 10 nm. The Purcell enhancement of the spontaneous emission of the quantum dots is studied theoretically and experimentally. The fabrication technique makes it possible to pattern the quantum dot monolayer such that the quantum dots only occupy the center of the nanopatch cavity where a Purcell factor up to 7 can be reached. The work paves the way towards scalable fabrication of bright and directive single-photon sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...