Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 56(17): 4877-4881, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28252240

RESUMO

The dehydrogenative cross-coupling of aniline derivatives to 2,2'-diaminobiaryls is reported. The oxidation is carried out electrochemically, which avoids the use of metals and reagents. A large variety of biphenyldiamines were thus prepared. The best results were obtained when glassy carbon was used as the anode material. The electrosynthetic reaction is easily performed in an undivided cell at slightly elevated temperature. In addition, common amine protecting groups based on carboxylic acids were employed that can be selectively removed under mild conditions after the cross-coupling, which provides quick and efficient access to important building blocks featuring free amine moieties.

2.
Angew Chem Int Ed Engl ; 55(36): 10872-6, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27490451

RESUMO

The anodic C-C cross-coupling reaction is a versatile synthetic approach to symmetric and non-symmetric biphenols and arylated phenols. We herein present a metal-free electrosynthetic method that provides access to symmetric and non-symmetric meta-terphenyl-2,2''-diols in good yields and high selectivity. Symmetric derivatives can be obtained by direct electrolysis in an undivided cell. The synthesis of non-symmetric meta-terphenyl-2,2''-diols required two electrochemical steps. The reactions are easy to conduct and scalable. The method also features a broad substrate scope, and a large variety of functional groups are tolerated. The target molecules may serve as [OCO](3-) pincer ligands.

3.
Chemistry ; 21(35): 12321-5, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26189655

RESUMO

Solvents such as 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) with a high capacity for donating hydrogen bonds generate solvates that enter into selective cross-coupling reactions of aryls upon oxidation. When electric current is employed for oxidation, reagent effects can be excluded and a decoupling of nucleophilicity from oxidation potential can be achieved. The addition of water or methanol to the electrolyte allows a shift of oxidation potentials in a specific range, creating suitable systems for selective anodic cross-coupling reactions. The shift in the redox potentials depends on the substitution pattern of the substrate employed. The concept has been expanded from arene-phenol to phenol-phenol as well as phenol-aniline cross-coupling. This driving force for selectivity in oxidative coupling might also explain previous findings using HFIP and hypervalent iodine reagents.

4.
Angew Chem Int Ed Engl ; 53(20): 5210-3, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24644088

RESUMO

The direct oxidative cross-coupling of phenols is a very challenging transformation, as homo-coupling is usually strongly preferred. Electrochemical methods circumvent the use of oxidizing reagents or metal catalysts and are therefore highly attractive. Employing electrolytes with a high capacity for hydrogen bonding, such as methanol with formic acid or 1,1,1,3,3,3-hexafluoro-2-propanol, a direct electrolysis in an undivided cell provides mixed 2,2'-biphenols with high selectivity. This mild method tolerates a variety of moieties, for example, tert-butyl groups, which are not compatible with other strong electrophilic media but vital for later catalytic applications of the formed products.


Assuntos
Eletrodos , Fenóis/química , Indicadores e Reagentes/química , Metais/química
5.
J Am Chem Soc ; 134(7): 3571-6, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22242769

RESUMO

C,C cross-coupling reactions for the synthesis of nonsymmetrical biaryls represent one of the most significant transformations in contemporary organic chemistry. A variety of useful synthetic methods have been developed in recent decades, since nonsymmetrical biaryls play an evident role in natural product synthesis, as ligand systems in homogeneous catalysis and materials science. Transformation of simple arenes by direct C,H activation belongs to the cutting-edge strategies for creating biaryls; in particular the 2-fold C,H activation is of significant interest. However, in most examples very costly noble metal catalysts, ligand systems, and significant amount of waste-producing oxidants are required. Electrochemical procedures are considered as inherently "green" methods, because only electrons are required and therefore, no reagent waste is produced. Here, we report a metal-free electrochemical method for cross-coupling between phenols and arenes using boron-doped diamond (BDD) anodes in fluorinated media. Our sustainable approach requires no leaving functionalities. Employing water or methanol as mediator represents the key improvement for achieving nonsymmetrical biaryls with superb selectivity and synthetic attractive yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...