Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 102(9): 102895, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37441904

RESUMO

The study examined how adding phytase to nonphytate phosphorus (NPP) diets affected performance, egg quality, reproductive hormones, and plasma biochemical indices in 73- to 80-wk-old laying hens. Six treatments with 5 replicates of 18 Hy-Line brown laying hens each were randomly assigned. Three isonitrogenous, isocaloric diets containing consistent calcium levels (3.8%) were formulated to contain 0.20, 0.25, and 0.30% NPP, treated with or without phytase supplementation (1,000 FYT per kg feed, Ronozyme HiPhos-L, Aspergillus oryzae 6-phytase). The results showed that the addition of phytase to the diet containing 0.20, 0.25, and 0.30% NPP increased egg production by 1.50, 1.64, and 0.97%, respectively, and improved eggshell thickness. Also, use of phytase in the diet contain 0.25, and 0.30% NPP increased the plasma concentration of albumin (ALB), high-density lipoprotein (HDL), phosphorus (P), and plasma follicle-stimulating hormone (FSH), plasma calcium (Ca), estradiol-17ß (E2ß), and luteinizing hormone (LH). In contrast, the egg weight, feed intake, egg mass, feed conversion ratio, albumen height, Haugh unit, yolk, and shell color were unaffected. It can be advisable to use phytase supplementation in an elderly laying hen's diet contain 0.25, and 0.30% NPP to improve shell quality and positively impact reproductive hormones leading to the persistence of egg production.


Assuntos
6-Fitase , Fósforo , Feminino , Animais , Galinhas , Cálcio , Ração Animal/análise , Oviposição , Óvulo , Dieta/veterinária , Hormônio Luteinizante , Envelhecimento , Suplementos Nutricionais
2.
Animals (Basel) ; 13(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36830366

RESUMO

This study aimed to investigate the effects of cold drinking water on cellular and humoral immunity in heat-exposed laying hens. One hundred and eight laying hens at 19 weeks old were placed into three treatments with six replicates of six hens in each group as follows: (1) hens were provided with normal drinking water (NW) under the control of thermoneutral temperature (CT: 25 ± 1 °C; CT + NW), (2) hens were provided with NW under high ambient temperature (HT: 35 ± 1 °C; HT + NW) for 8 h/d for a month, and (3) hens were treated under HT with cold drinking water (CW: 15 ± 1 °C; HT + CW) for 8 h/d for a 4-weeks. Then, the feed consumption, egg production, egg weight, feed conversion ratio, and blood immune parameters were investigated. The results showed that cold drinking water (CW) caused a significant (p < 0.05) recovery in the reduction of food intake and egg production due to heat stress; however, there was no significant effect (p > 0.05) on egg weight and feed conversion ratio. Moreover, CW significantly (p < 0.05) restored the immune-suppressing effects of heat stress on the contents of peripheral blood mononuclear cells, including B-cell (BU-Ia), helper T cell (CD4), and the ratio of helper/cytotoxic T cell (CD4/CD8). In addition, CW significantly (p < 0.05) recovered the reduction on the level of mRNA expression of interleukin-2 (IL-2) and interferon-gamma (IFN-γ), as well as significantly (p < 0.05) restored the reduction of plasma concentration of IL-2, IFN-γ and immunoglobulin G in heat-stressed laying hens. These results prove that CW increased heat dissipation and enhanced feed intake, egg production, and cellular and humoral immunity in heat-exposed laying hens.

3.
Anim Sci J ; 92(1): e13578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235825

RESUMO

We examined the effects of oral administration of L-citrulline (L-Cit) on plasma metabolic hormones and biochemical profile in broilers. Food intake, water intake, and body temperature were also analyzed. After dual oral administration (20 mmol/head/administration) of L-Cit, broilers were exposed to a high ambient temperature (HT; 30 ± 1°C) chamber for 120 min. Oral administration of L-Cit reduced (p < .001) rectal temperature in broilers. Food intake was increased (p < .05) by heat stress, but it was reduced (p < .05) by L-Cit. Plasma levels of 3,5,3'-triiodothyronine, which initially increased (p < .0001) due to heat stress, were reduced (p < .01) by oral administration of L-Cit. Plasma insulin levels were increased by heat exposure (p < .01) and oral L-Cit (p < .05). Heat stress caused a decline (p < .05) in plasma thyroxine. Plasma lactic acid (p < .05) and non-esterified fatty acids (p < .01) were increased in L-Cit-treated heat-exposed broilers. In conclusion, our results suggest that oral L-Cit can modulate plasma concentrations of major metabolic hormones and reduces food intake in broilers.


Assuntos
Citrulina , Transtornos de Estresse por Calor , Administração Oral , Animais , Galinhas , Transtornos de Estresse por Calor/veterinária , Hormônios , Temperatura Alta
4.
Animals (Basel) ; 11(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669736

RESUMO

Catalytic and physicochemical properties of microbial phytase sources may differ, affecting phosphorus (P) release and subsequently the productive and reproductive performance of layers. The current study aimed to evaluate the impact of bacterial and fungal phytase sources on layer productivity, egg production, biochemical blood indices, and reproductive morphology. For this purpose, 360 Bovans brown hens at 42 weeks of age were randomly allocated into 4 experimental groups, each with 15 replicates of 6 hens. The first group (control) was fed a basal diet with 4.6 g/kg available P. In contrast, the second, third, and fourth groups were fed diets treated with 3.2 g/kg available P, supplemented with either 5000 FTU/kg of bacterial E. coli (QuantumTM Blue 5G), fungal Aspergillus niger (VemoZyme® F 5000 Naturally Thermostable Phytase (NTP)), or fungal Trichodermareesei (Yemzim® FZ100). Dietary supplementation of bacterial and fungal phytases did not affect the productive performance or egg quality criteria, except for increased shell weight and thickness (p < 0.05). Serum hepatic function biomarkers and lipid profiles were not altered in treated hens, while calcium and P levels were increased (p < 0.05) related to the controls. Ovary index and length, and relative weight of oviduct and its segments were not influenced. The contents of cholesterol and malondialdehyde in the yolks from treated birds were lower compared to control hens, while calcium and P content increased (p < 0.05). Conclusively, bacterial and fungal phytase sources can compensate for the reduction of available P in layers' diets and enhance shell and yolk quality without affecting productive performance, and no differences among them were noticed.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32629087

RESUMO

Oral administration of sucralose has been reported to stimulate food intake through inducing hypothalamic neuropeptide Y (NPY) in mice and fruit flies. However, the underlying mechanisms of action of sucralose in hypothermia and NPY and monoamine regulation remain unknown. The aim of the present study was to investigate central effects of sucralose on body temperature, NPY, and monoamine regulation, as well as its peripheral effects, in chicks. In Experiment 1, 5-day-old chicks were centrally injected with 1 µmol of sucralose, other sweeteners (erythritol and glucose), or saline. In Experiment 2, chicks were centrally injected with 0.2, 0.4, and 1.6 µmol of sucralose or saline. In Experiment 3, chicks were centrally injected with 0.8 µmol of sucralose or saline, with a co-injection of 100 µg fusaric acid (FA), an inhibitor of dopamine-ß-hydroxylase, to examine the role dopamine in sucralose induced hypothermia. In Experiment 4, 7-16-day-old chicks were orally administered with 75, 150, and 300 mg/2 ml distilled water or sucralose, daily. We observed that the central injection of sucralose, but not other sweeteners, decreased body temperature (P < .05) in chicks; however, the oral injection did not influence body temperature, food intake, and body weight gain. Central sucralose administration decreased dopamine and serotonin and stimulated dopamine turnover rate in the hypothalamus significantly (P < .05). Notably, sucralose co-injection with FA impeded sucralose-induced hypothermia. Sucralose decreases body temperature potentially via central monoaminergic pathways in the hypothalamus.


Assuntos
Dopamina/análise , Hipotálamo/metabolismo , Hipotermia/metabolismo , Serotonina/análise , Sacarose/análogos & derivados , Administração Oral , Animais , Temperatura Corporal , Encéfalo/metabolismo , Galinhas , Eritritol/análise , Ácido Fusárico/química , Glucose/análise , Infusões Intraventriculares , Masculino , Neuropeptídeo Y/metabolismo , Sacarose/química
6.
J Poult Sci ; 57(1): 37-44, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-32174763

RESUMO

Oral administration of l-citrulline (l-Cit) caused hypothermia, but l-Cit is not recommended in poultry diets in Japan. Watermelon is a natural source of l-Cit. The objective of this study is to examine the effect of watermelon waste, i.e., watermelon rind (WR) on the body temperature and plasma free amino acids of chicks. In Experiment 1, 14-day-old chicks were subjected to acute oral administration of WR extract (WRE) (2 ml) under control thermoneutral temperature (CT). In Experiment 2, 15-day-old chicks were orally administered 1.6 ml of either WRE, lowdose l-Cit (7.5 mmol/10 ml), or high-dose l-Cit (15 mmol/10 ml) under CT. In both experiments, rectal temperature (RT) and plasma free amino acids were analyzed. In Experiment 3, after dual oral administration of (1.6 ml) WRE or l-Cit (15 mmol/10 ml), 15-day-old chicks were exposed to high ambient temperature (HT; 35±1°C, 2 h) to monitor changes in RT. Acute oral administration of WRE significantly reduced RT under CT. The degree of RT reduction by WRE was similar to that by high l-Cit. Moreover, RT was significantly low at HT owing to the oral administration of WRE. However, the reduced RT was difficult to explain by the content of Cit in WRE alone. In conclusion, WRE could be used as a dietary ingredient to reduce body temperature for imparting thermotolerance in chicks.

7.
Front Vet Sci ; 7: 610541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490137

RESUMO

Increased average air temperatures and more frequent and prolonged periods of high ambient temperature (HT) associated with global warming will increasingly affect worldwide poultry production. It is thus important to understand how HT impacts poultry physiology and to identify novel approaches to facilitate improved adaptation and thereby maximize poultry growth, health and welfare. Amino acids play a role in many physiological functions, including stress responses, and their relative demand and metabolism are altered tissue-specifically during exposure to HT. For instance, HT decreases plasma citrulline (Cit) in chicks and leucine (Leu) in the embryonic brain and liver. The physiological significance of these changes in amino acids may involve protection of the body from heat stress. Thus, numerous studies have focused on evaluating the effects of dietary administration of amino acids. It was found that oral l-Cit lowered body temperature and increased thermotolerance in layer chicks. When l-Leu was injected into fertile broiler eggs to examine the cause of reduction of Leu in embryos exposed to HT, in ovo feeding of l-Leu improved thermotolerance in broiler chicks. In ovo injection of l-Leu was also found to inhibit weight loss in market-age broilers exposed to chronic HT, giving rise to the possibility of developing a novel biotechnology aimed at minimizing the economic losses to poultry producers during summer heat stress. These findings and the significance of amino acid metabolism in chicks and market-age broilers under HT are summarized and discussed in this review.

8.
J Poult Sci ; 56(1): 65-70, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-32055198

RESUMO

Heat stress is an increasing concern in poultry industry as it can cause a rise in the body temperature of chickens. Recently, we reported that l-citrulline (l-Cit) is a potential hypothermic agent that could improve thermotolerance in chicks. However, synthetic l-Cit has not yet been approved for inclusion in animal diets. l-Cit was first isolated from watermelon. Watermelon rind (WR), an agricultural waste product, contains more l-Cit than the flesh of the fruit. In the current study, the chemical composition and l-Cit content of WR dried powder (WRP) were determined. WRP was mixed with water at a ratio of 4:5 (wt/v) to make WRP mash, and then mixed with a commercial starter diet to prepare a 9% WRP mash diet. The WRP mash diet was fed to 3- to 15-day-old chicks and daily food intake, body weight, and changes in rectal temperature were measured. At the end of the experiment, blood was collected from the chicks to analyze plasma l-Cit and other free amino acids. The chemical analysis of WRP revealed a variety of components including 19.1% crude protein. l-Cit was the most abundant free amino acid in WRP (3.18 mg/g). Chronic supplementation of the WRP mash diet significantly increased compensatory food intake, plasma l-Cit, l-ornithine, and l-tyrosine in chicks. WRP mash diet did not affect the body temperature of the chicks. In conclusion, WRP mash diet supplementation increased plasma l-Cit concentration in chicks. The increase in plasma l-Cit concentrations suggest that WR could be used as a natural source of l-Cit in chicks to ameliorate the adverse effects of heat stress.

9.
Neuropeptides ; 71: 90-96, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30220422

RESUMO

Heat stress is an issue of rising concern across the globe. Recently, we found that mRNA expression of gonadotropin-inhibitory hormone (GnIH), an orexigenic neuropeptide, was increased in the heat-exposed chick brain when food intake was reduced. The aim of the current study was to examine mRNA expression of GnIH and of the glucocorticoid receptors (GRs) in the hypothalamus as well as the plasma corticosterone (CORT) and metabolites in 14-d-old chicks exposed to a high ambient temperature (HT; 40 ±â€¯1 °C for 1 or 5 h) or a control thermoneutral temperature (CT; 30 ±â€¯1 °C), either with free access to food or fasted. Heat stress caused a voluntary reduction of food intake and reduced plasma triacylglycerol concentration, but increased rectal temperature and plasma CORT and glucose concentrations (P < 0.05). Heat stress also increased (P < 0.05) the expression of diencephalic GnIH mRNA in chicks when they reduced food intake voluntarily, but did not do so under fasting conditions. Although the expression of GR mRNA was not altered as a result of heat stress, its expression was decreased (P < 0.05) in fasted chicks at 5 h in comparison with fed chicks. In addition, the rectal temperature of fasted chicks was lower than that of fed chicks under both CT and HT. In conclusion, voluntary reduction of food intake caused an increase in brain GnIH mRNA expression, plasma CORT, and body temperature in chicks under heat stress. Interestingly, brain GnIH mRNA expression was not induced by heat stress in fasted chicks and was not accompanied by a decrease in rectal temperature. These results suggest that the increased expression of brain GnIH mRNA in chicks under heat stress could be a consequence of a mechanism mediated by the voluntary reduction of food intake, but that it is not a consequence of fasting.


Assuntos
Proteínas Aviárias/metabolismo , Ingestão de Alimentos/fisiologia , Jejum/metabolismo , Temperatura Alta , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Animais , Proteínas Aviárias/genética , Galinhas , Hormônios Hipotalâmicos/genética , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
J Therm Biol ; 71: 74-82, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29301703

RESUMO

Thermal manipulation declined embryonic brain and liver concentrations of leucine (Leu). L-Leu in ovo injection afforded thermotolerance in male broiler chicks. This study aimed to examine the role of in ovo injection of L-Leu in metabolic functions, and differences between male and female broiler chicks in thermotolerance. L-Leu injection was performed in ovo on embryonic day (ED) 7 to reveal its role in metabolic activity in embryos and in post-hatch male and female broiler chicks under heat stress. To examine the metabolic activity of embryos, oxygen (O2) consumption, carbon dioxide (CO2) production, heat production and plasma metabolites were analyzed. Rectal temperature, food intake and plasma metabolites were also analyzed in heat-exposed (35 ± 1°C for 180min) male and female broiler chicks. It was found that O2 consumption, heat production, and plasma triacylglycerol (TG) and non-esterified fatty acid (NEFA) concentrations in ED 14 embryos were significantly increased by in ovo injection of L-Leu in comparison with the controls. Plasma glucose concentration was significantly increased in both male and female chicks under heat stress, but in ovo injection of L-Leu attenuated the increase in male chicks. In contrast, plasma TG, NEFA, and ketone body concentrations were significantly higher in male chicks injected in ovo with L-Leu, but not in similarly injected female chicks, compared with control chicks, all under heat stress. Rectal temperature and food intake were significantly lower in male, but not female, chicks under heat stress injected in ovo with L-Leu. In conclusion, in ovoL-Leu administration enhanced the prenatal metabolic rate and lipid metabolisms, which possibly appeared as sex-dependent fashion to facilitate thermotolerance in males. A reduction in heat production through lowered food intake in heat-exposed male, but not female chicks injected in ovo with L-Leu may help to afford thermotolerance in male broiler chicks under heat stress.


Assuntos
Galinhas/fisiologia , Leucina/farmacologia , Metabolismo dos Lipídeos , Termotolerância , Animais , Metabolismo Basal , Embrião de Galinha/efeitos dos fármacos , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Ingestão de Energia , Feminino , Resposta ao Choque Térmico , Leucina/administração & dosagem , Masculino , Fatores Sexuais
11.
Physiol Rep ; 5(23)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29208684

RESUMO

Exposure of chicks to a high ambient temperature (HT) has previously been shown to increase neuropeptide Y (NPY) mRNA expression in the brain. Furthermore, it was found that NPY has anti-stress functions in heat-exposed fasted chicks. The aim of the study was to reveal the role of central administration of NPY on thermotolerance ability and the induction of heat-shock protein (HSP) and NPY sub-receptors (NPYSRs) in fasted chicks with the contribution of plasma metabolite changes. Six- or seven-day-old chicks were centrally injected with 0 or 375 pmol of NPY and exposed to either HT (35 ± 1°C) or control thermoneutral temperature (CT: 30 ± 1°C) for 60 min while fasted. NPY reduced body temperature under both CT and HT NPY enhanced the brain mRNA expression of HSP-70 and -90, as well as of NPYSRs-Y5, -Y6, and -Y7, but not -Y1, -Y2, and -Y4, under CT and HT A coinjection of an NPYSR-Y5 antagonist (CGP71683) and NPY (375 pmol) attenuated the NPY-induced hypothermia. Furthermore, central NPY decreased plasma glucose and triacylglycerol under CT and HT and kept plasma corticosterone and epinephrine lower under HT NPY increased plasma taurine and anserine concentrations. In conclusion, brain NPYSR-Y5 partially afforded protective thermotolerance in heat-exposed fasted chicks. The NPY-mediated reduction in plasma glucose and stress hormone levels and the increase in free amino acids in plasma further suggest that NPY might potentially play a role in minimizing heat stress in fasted chicks.


Assuntos
Encéfalo/metabolismo , Jejum/metabolismo , Resposta ao Choque Térmico , Hipotermia/metabolismo , Neuropeptídeo Y/farmacologia , Adaptação Fisiológica , Animais , Glicemia/metabolismo , Temperatura Corporal , Encéfalo/efeitos dos fármacos , Galinhas , Jejum/fisiologia , Proteínas de Choque Térmico/metabolismo , Hipotermia/etiologia , Hipotermia/fisiopatologia , Masculino , Naftalenos/farmacologia , Neuropeptídeo Y/toxicidade , Pirimidinas/farmacologia , Receptores de Neuropeptídeo Y/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...