Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501748

RESUMO

With the growing need to obtain information about power consumption in buildings, it is necessary to investigate how to collect, store, and visualize such information using low-cost solutions. Currently, the available building management solutions are expensive and challenging to support small and medium-sized buildings. Unfortunately, not all buildings are intelligent, making it difficult to obtain such data from energy measurement devices and appliances or access such information. The internet of things (IoT) opens new opportunities to support real-time monitoring and control to achieve future smart buildings. This work proposes an IoT platform for remote monitoring and control of smart buildings, which consists of four-layer architecture: power layer, data acquisition layer, communication network layer, and application layer. The proposed platform allows data collection for energy consumption, data storage, and visualization. Various sensor nodes and measurement devices are considered to collect information on energy use from different building spaces. The proposed solution has been designed, implemented, and tested on a university campus considering three scenarios: an office, a classroom, and a laboratory. This work provides a guideline for future implementation of intelligent buildings using low-cost open-source solutions to enable building automation, minimize power consumption costs, and guarantee end-user comfort.


Assuntos
Internet das Coisas , Humanos , Inteligência , Automação , Coleta de Dados , Laboratórios
2.
Sensors (Basel) ; 23(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616774

RESUMO

The advances in the Internet of Things (IoT) and cloud computing opened new opportunities for developing various smart grid applications and services. The rapidly increasing adoption of IoT devices has enabled the development of applications and solutions to manage energy consumption efficiently. This work presents the design and implementation of a home energy management system (HEMS), which allows collecting and storing energy consumption data from appliances and the main load of the home. Two scenarios are designed and implemented: a local HEMS isolated from the Internet and relies on its processing and storage duties using an edge device and a Cloud HEMS using AWS IoT Core to manage incoming data messages and provide data-driven services and applications. A testbed was carried out in a real house in the city of Valparaiso, Chile, over a one-year period, where four appliances were used to collect energy consumption using smart plugs, as well as collecting the main energy load of the house through a data logger acting as a smart meter. To the best of our knowledge, this is the first electrical energy dataset with a 10-second sampling rate from a real household in Valparaiso, Chile. Results show that both implementations perform the baseline tasks (collecting, storing, and controlling) for a HEMS. This work contributes by providing a detailed technical implementation of HEMS that enables researchers and engineers to develop and implement HEMS solutions to support different smart home applications.

3.
PLoS One ; 13(11): e0206171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30388119

RESUMO

Particle Swarm Optimization (PSO) is widely used in maximum power point tracking (MPPT) of photovoltaic (PV) energy systems. Nevertheless, this technique suffers from two main problems in the case of partial shading conditions (PSCs). The first problem is that PSO is a time invariant optimization technique that cannot follow the dynamic global peak (GP) under time variant shading patterns (SPs) and sticks to the first GP that occurs at the beginning. This problem can be solved by dispersing the PSO particles using two new techniques introduced in this paper. The two new proposed PSO re-initialization techniques are to disperse the particles upon the SP changes and the other one is upon a predefined time (PDT). The second problem is regarding the high oscillations around steady state, which can be solved by using fuzzy logic controller (FLC) to fine-tune the output power and voltage from the PV system. The new contribution of this paper is the hybrid PSO-FLC with two PSO particles dispersing techniques that is able to solve the two previous mentioned problems effectively and improve the performance of the PV system in both normal and PSCs. A detailed list of comparisons between hybrid PSO-FLC and original PSO using the two proposed methodologies are achieved. The results prove the superior performance of hybrid PSO-FLC compared to PSO in terms of efficiency, accuracy, oscillations reduction around steady state and soft tuning of the GP tracked.


Assuntos
Algoritmos , Lógica Fuzzy , Energia Solar , Simulação por Computador , Modelos Teóricos , Fatores de Tempo
4.
PLoS One ; 11(8): e0159702, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27513000

RESUMO

This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers.


Assuntos
Algoritmos , Fontes de Energia Elétrica/normas , Modelos Teóricos , Energia Renovável/normas , Simulação por Computador , Conservação de Recursos Energéticos , Reprodutibilidade dos Testes , Arábia Saudita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...