Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 13(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37763188

RESUMO

Cardiovascular diseases (CVDs) account for a significant portion of global mortality, emphasizing the need for effective strategies. This study focuses on myocardial infarction, pulmonary thromboembolism, and aortic stenosis, aiming to empower medical practitioners with tools for informed decision making and timely interventions. Drawing from data at Hospital Santa Maria, our approach combines exploratory data analysis (EDA) and predictive machine learning (ML) models, guided by the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology. EDA reveals intricate patterns and relationships specific to cardiovascular diseases. ML models achieve accuracies above 80%, providing a 13 min window to predict myocardial ischemia incidents and intervene proactively. This paper presents a Proof of Concept for real-time data and predictive capabilities in enhancing medical strategies.

2.
Healthcare (Basel) ; 11(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36673538

RESUMO

Data sharing in the health sector represents a big problem due to privacy and security issues. Health data have tremendous value for organisations and criminals. The European Commission has classified health data as a unique resource owing to their ability to enable both retrospective and prospective research at a low cost. Similarly, the Organisation for Economic Co-operation and Development (OECD) encourages member nations to create and implement health data governance systems that protect individual privacy while allowing data sharing. This paper proposes adopting a blockchain framework to enable the transparent sharing of medical information among health entities in a secure environment. We develop a laboratory-based prototype using a design science research methodology (DSRM). This approach has its roots in the sciences of engineering and artificial intelligence, and its primary goal is to create relevant artefacts that add value to the fields in which they are used. We adopt a patient-centric approach, according to which a patient is the owner of their data and may allow hospitals and health professionals access to their data.

3.
J Pers Med ; 11(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202813

RESUMO

Currently, an echocardiography expert is needed to identify calcium in the aortic valve, and a cardiac CT-Scan image is needed for calcium quantification. When performing a CT-scan, the patient is subject to radiation, and therefore the number of CT-scans that can be performed should be limited, restricting the patient's monitoring. Computer Vision (CV) has opened new opportunities for improved efficiency when extracting knowledge from an image. Applying CV techniques on echocardiography imaging may reduce the medical workload for identifying the calcium and quantifying it, helping doctors to maintain a better tracking of their patients. In our approach, a simple technique to identify and extract the calcium pixel count from echocardiography imaging, was developed by using CV. Based on anonymized real patient echocardiographic images, this approach enables semi-automatic calcium identification. As the brightness of echocardiography images (with the highest intensity corresponding to calcium) vary depending on the acquisition settings, echocardiographic adaptive image binarization has been performed. Given that blood maintains the same intensity on echocardiographic images-being always the darker region-blood areas in the image were used to create an adaptive threshold for binarization. After binarization, the region of interest (ROI) with calcium, was interactively selected by an echocardiography expert and extracted, allowing us to compute a calcium pixel count, corresponding to the spatial amount of calcium. The results obtained from these experiments are encouraging. With this technique, from echocardiographic images collected for the same patient with different acquisition settings and different brightness, obtaining a calcium pixel count, where pixel values show an absolute pixel value margin of error of 3 (on a scale from 0 to 255), achieving a Pearson Correlation of 0.92 indicating a strong correlation with the human expert assessment of calcium area for the same images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...