Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14439-14444, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743876

RESUMO

Cyclic secondary amines are prominent subunits in pharmaceutical compounds. Methods for direct functionalization of N-unprotected/unsubstituted piperidines and related heterocycles have limited precedent despite their potential to impact medicinal chemistry and organic synthesis. Herein, we report a Cu/nitroxyl co-catalyzed method for direct conversion of cyclic secondary amines to the corresponding lactams via aerobic dehydrogenation and oxidative coupling with water. The mild reaction conditions tolerate diverse functional groups, enabling application to molecules that cover broad chemical space. The method is showcased in selective functionalization of building blocks and complex molecules, including late-stage functionalization of bromodomain inhibitors.


Assuntos
Aminas , Cobre , Óxidos de Nitrogênio , Catálise , Cobre/química , Aminas/química , Óxidos de Nitrogênio/química , Estrutura Molecular , Oxirredução , Oxigênio/química
2.
Org Lett ; 21(22): 8981-8986, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31651171

RESUMO

Through targeted high-throughput experimentation (HTE), we have identified the Pd/AdBippyPhos catalyst system as an effective and general method to construct densely functionalized N,N-diaryl sulfonamide motifs relevant to medicinal chemistry. AdBippyPhos is particularly effective for the installation of heteroaromatic groups. Computational steric parametrization of the investigated ligands reveals the potential importance of remote steric demand, where a large cone angle combined with an accessible Pd center is correlated to successful catalysts for C-N coupling reactions.

3.
J Phys Condens Matter ; 30(39): 395801, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30106006

RESUMO

A doped non-diamagnetic alumina (Al2O3) would enable the usage of cutting edge technology, such as magnetoforming, to create advanced systems that take advantage of the high chemical and physical resilience of alumina. This study elucidates the magnetic properties of Cr, Fe, Ni, and Cu doped α- and ϑ-alumina. Density functional theory was used to predict the structural, electronic, and magnetic properties of doped alumina, as well as its stability. The results indicate that the dopant species and coordination environment are the most important factors in determining the spin density distribution and net magnetic moment, which will strongly direct the ability of the doped alumina to couple with an external field. Similar coordination environments in different phases produce similar spin densities and magnetic moments, indicating that the results presented in this work may be generalizable to the other five or more phases of alumina not studied here.

4.
J Chem Theory Comput ; 11(2): 462-71, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26580906

RESUMO

Presence of heterojunctions is important for generation of free charge carriers and the dissociation of bound electron-hole pairs in semiconductor nanoparticles. This work presents a theoretical investigation of the effect of core/shell heterojunction on electron-hole interaction in CdSe/ZnS quantum dots. The excitonic wave function in the CdSe/ZnS dots was calculated using the electron-hole explicitly correlated Hartree-Fock (eh-XCHF) method and the effect of successive addition of the ZnS shell on exciton binding energy, electron-hole recombination probability, and the electron-hole separation distance was investigated. It was found that the scaling of all the three quantities as a function of dot diameter did not follow conventional volume scaling laws of core-only dots, and the scaling laws were significantly altered due to the presence of the heterojunction. The spatial localization of the quasiparticles in the core/shell quantum dot was analyzed by calculating the 1-particle reduced density from the eh-XCHF wave function and partitioning the density spatially into core and shell regions. It was found that in the 15 nm CdSe/ZnS dot, the relative probability of the electron localization in the shell region was higher than the hole by a factor of 3. The degree of spatial localization of the quasiparticles was found to depend strongly on the initial size of the CdSe core in the core/shell quantum dot. It was found that a reduction in the CdSe core diameter by a factor of 1.7 resulted in an enhancement of the preferential localization of the electron in the shell region by a factor of 11.3. The results demonstrate that large CdSe/ZnS quantum dots with a small CdSe core have the necessary characteristics for efficient exciton dissociation and generation of free charge carriers.

5.
Phys Chem Chem Phys ; 17(37): 24322-35, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26327506

RESUMO

Several algorithms for optimizing a combinatorial subspace of chemical compound space with constraints are compared. The test system is a library of organic chromophores for electro-optic applications. The constraints on the optimization include the maximization of the candidate structure hyperpolarizability while keeping the absorption within acceptable limits in the range of 400-700 nm. The best pay-off in terms of primary objective, feasibility and computational cost is achieved using a heuristic reordering of orthogonal search directions.


Assuntos
Algoritmos , Compostos Orgânicos/química , Estrutura Molecular , Propriedades de Superfície
6.
J Chem Theory Comput ; 10(12): 5224-8, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26583205

RESUMO

Theoretical investigation of protein corona is challenging because of the size of the protein-dot complex. In this work, we have addressed this computational bottleneck by combining pseudopotential + explicitly correlated Hartree-Fock QM calculations with molecular mechanics, molecular dynamics, and Monte Carlo techniques. The optical gap of a 5 nm CdSe quantum dot (Cd1159Se1183) was computed by sequential addition of luciferase (Lu), and a red shift of 8 nm in the λmax of protein corona (CdSe-Lu7) was observed.

8.
J Chem Phys ; 136(12): 124105, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22462833

RESUMO

The electron-hole explicitly correlated Hartree-Fock method (eh-XCHF) is presented as a general strategy for investigation of electron-hole correlation and computation of electron-hole recombination probability. The eh-XCHF method is a variational method which uses explicitly correlated wavefunction that depends on the electron-hole inter-particle distances. It is shown that the explicitly correlated ansatz provides a systematic route to variationally minimize the total energy. The parabolic quantum dot is used as the benchmark system and the eh-XCHF method is used for computation of the ground state energy and electron-hole recombination probability. The results are compared to Hartree-Fock and explicitly correlated full configuration interaction (R12-FCI) calculations. The results indicate that an accurate description of the electron-hole wavefunction at short electron-hole inter-particle distances is crucial for qualitative description of the electron-hole recombination probability. The eh-XCHF method successfully addresses this issue and comparison of eh-XCHF calculations with R12-FCI shows good agreement. The quality of the mean field approximation for electron-hole system is also investigated by comparing HF and R12-FCI energies for electron-electron and electron-hole systems. It was found that performance of the mean field approximation is worse for the electron-hole system as compared to the corresponding electron-electron system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...