Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 24(12): 2419-2436, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36377918

RESUMO

Municipalities in central Oklahoma, U.S.A. increasingly rely on water drawn from the Central Oklahoma Aquifer (COA) as surface water resources have not grown in proportion to population and current water demands. However, water drawn from certain regions of the COA frequently contains elevated levels of naturally occurring hexavalent chromium. Rock samples from the Norman Arsenic Test Hole Core (NATHC) were investigated to identify the mineralogic host(s) of Cr and mechanisms of Cr(VI) release via bulk mineralogy and chemistry measurements, selective chemical extractions, and microscale elemental analyses. Results demonstrate most COA Cr is contained in Fe oxides and clays as isomorphic substitutions for Fe(III). Analyses of regional groundwater data, including hierarchical clustering methods and GIS, demonstrate the most intense Cr(VI) occurrence is linked to cation exchange with Na-clays at depth. Cation exchange allows dissolution of Mn-bearing dolomite, which in turn produces Mn oxides in otherwise dolomite-saturated groundwaters. Mn oxides in turn are known to oxidize Cr(III) to Cr(VI). In general, co-occurrence of Mn-bearing carbonates and exchangeable clays in any aquifer, particularly those with Cr(III) present in iron oxide cements, serve as ingredients for groundwater occurrences of oxidizable trace metals.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Compostos Férricos , Argila , Solubilidade , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Cromo/análise , Óxidos , Água/análise , Cátions , Coenzima A/análise
2.
Environ Sci Process Impacts ; 18(10): 1266-1273, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711891

RESUMO

Trichloroethylene (TCE) and tetrachloroethylene (PCE) are common ground water contaminants susceptible to reductive dechlorination by FeS (mackinawite) in anaerobic environments. The objective of this study was to characterize the mineral-associated products that form when mackinawite reacts with TCE and PCE. The dissolved products of the reaction included Cl- and Fe2+, and trace amounts of cis 1,2-dichloroethylene (for TCE) and TCE (for PCE). Selected area electron diffraction (SAED) analysis identified greigite as a mackinawite oxidation product formed after reaction between TCE or PCE and FeS over seven weeks. Release of Fe2+ is consistent with the solid state transformation of mackinawite to greigite, resulting in depletion of the solid with Fe. X-ray photoelectron spectroscopy of the sulfur 2p peak showed a shift to a higher binding energy after FeS reacted with TCE or PCE, also observed in other studies of mackinawite oxidation to greigite. The results may help efforts to maintain the reactivity of FeS generated to remediate chlorinated aliphatic contaminants in ground water.


Assuntos
Compostos Ferrosos/química , Ferro/química , Sulfetos/química , Tetracloroetileno/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Dicloroetilenos/química , Recuperação e Remediação Ambiental , Oxirredução
3.
Environ Sci Process Impacts ; 17(11): 1930-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26452013

RESUMO

Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS). The properties of the resulting Fe-Cr solids and their behavior upon exposure to the oxidant manganese (Mn) oxide (birnessite) differed significantly. In microcosms containing strain RCH1 and hematite or Al-goethite, there was significant initial loss of Cr(vi) in a pattern consistent with adsorption, and significant Cr(vi) was found in the resulting solids. The solid formed when Cr(vi) was reduced by FeS contained a high proportion of Cr(iii) and was poorly crystalline. In microcosms with strain RCH1 and hematite, Cr precipitates appeared to be concentrated in organic biofilms. Reaction between birnessite and the abiotically formed Cr(iii) solids led to production of significant dissolved Cr(vi) compared to the no-birnessite controls. This pattern was not observed in the solids generated by microbial Cr(vi) reduction, possibly due to re-reduction of any Cr(vi) generated upon oxidation by birnessite by active bacteria or microbial enzymes. The results of this study suggest that Fe-Cr precipitates formed in groundwater remediation may remain stable only in the presence of active anaerobic microbial reduction. If exposed to environmentally common Mn oxides such as birnessite in the absence of microbial activity, there is the potential for rapid (re)formation of dissolved Cr(vi) above regulatory levels.


Assuntos
Cromo/análise , Recuperação e Remediação Ambiental/métodos , Compostos de Manganês/química , Óxidos/química , Poluentes Químicos da Água/análise , Cromo/química , Cromo/metabolismo , Água Subterrânea , Oxirredução , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
4.
Environ Sci Technol ; 49(4): 2156-62, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25607467

RESUMO

Chromate was used as a chemical probe to investigate the size-dependent influence of organics on nanoparticle surface reactivity. Magnetite-chromate sorption experiments were conducted with ∼ 90 and ∼ 6 nm magnetite nanoparticles in the presence and absence of fulvic acid (FA), natural organic matter (NOM), and isolated landfill leachate (LL). Results indicated that low concentrations (1 mg/L) of organics had no noticeable impact on chromate sorption, whereas concentrations of 50 mg/L or more resulted in decreased amounts of chromate sorption. The adsorption of organics onto the magnetite surfaces interfered equally with the ability of the 6 and 90 nm particles to sorb chromate from solution, despite the greater surface area of the smaller particles. Results indicate the presence of organics did not impact the redox chemistry of the magnetite-chromate system over the duration of the experiments (8 h), nor did the organics interact with the chromate in solution. Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) results indicate that the organics blocked the surface reactivity by occupying surface sites on the particles. The similarity of results with FA and NOM suggests that coverage of the reactive mineral surface is the main factor behind the inhibition of surface reactivity in the presence of organics.


Assuntos
Cromatos/química , Nanopartículas de Magnetita/química , Adsorção , Benzopiranos/química , Substâncias Húmicas/análise , Microscopia Eletrônica de Varredura , Oxirredução , Propriedades de Superfície , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...