Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 178: 104946, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34446184

RESUMO

Spodoptera litura (Fabricius) is a widely distributed, highly polyphagous pest that can cause severe damage to a variety of economically important crops. Various populations have developed resistance to different classes of insecticides. In this study, we report on two indoxacarb-resistant S. litura populations, namely Ind-R (resistance ratio = 18.37-fold) derived from an indoxacarb-susceptible (Ind-S) population and a population caught from a field (resistance ratio = 46.72-fold). A synergist experiment showed that piperonyl butoxide (PBO) combined with indoxacarb produced higher synergistic effects (synergist ratio = 5.29) in the Ind-R population as compared to Ind-S (synergist ratio = 3.08). Elevated enzyme activity of cytochrome P450 monooxygenases (P450s) was observed for Ind-R (2.15-fold) and the Field-caught population (4.03-fold) as compared to Ind-S, while only minor differences were noticed in the activities of esterases and glutathione S-transferases. Furthermore, expression levels of P450 genes of S. litura were determined by quantitative reverse transcription PCR to explore differences among the three populations. The results showed that the mRNA levels of CYP6AE68, a novel P450 gene belonging to the CYP6 family, were constitutively overexpressed in Ind-R (32.79-fold) and in the Field-caught population (68.11-fold). CYP6AE68 expression in S. litura was further analyzed for different developmental stages and in different tissues. Finally, we report that RNA interference-mediated silencing of CYP6AE68 increased the mortality of fourth-instar larvae exposed to indoxacarb at the LC50 dose level (increase by 33.89%, 29.44% and 22.78% for Ind-S, Ind-R and the Field-caught population, respectively). In conclusion, the findings of this study indicate that expression levels of CYP6AE68 in S. litura larvae are associated with indoxacarb resistance and that CYP6AE68 may play a significant role in detoxification of indoxacarb.


Assuntos
Inseticidas , Mariposas , Animais , Sistema Enzimático do Citocromo P-450/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Oxazinas/farmacologia , Spodoptera/genética
2.
PLoS Genet ; 17(3): e1009403, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690635

RESUMO

The evolution of insect resistance to insecticides is frequently associated with overexpression of one or more cytochrome P450 enzyme genes. Although overexpression of CYP450 genes is a well-known mechanism of insecticide resistance, the underlying regulatory mechanisms are poorly understood. Here we uncovered the mechanisms of overexpression of the P450 gene, CYP321A8 in a major pest insect, Spodoptera exigua that is resistant to multiple insecticides. CYP321A8 confers resistance to organophosphate (chlorpyrifos) and pyrethroid (cypermethrin and deltamethrin) insecticides in this insect. Constitutive upregulation of transcription factors CncC/Maf are partially responsible for upregulated expression of CYP321A8 in the resistant strain. Reporter gene assays and site-directed mutagenesis analyses demonstrated that CncC/Maf enhanced the expression of CYP321A8 by binding to specific sites in the promoter. Additional cis-regulatory elements resulting from a mutation in the CYP321A8 promoter in the resistant strain facilitates the binding of the orphan nuclear receptor, Knirps, and enhances the promoter activity. These results demonstrate that two independent mechanisms; overexpression of transcription factors and mutations in the promoter region resulting in a new cis-regulatory element that facilitates binding of the orphan nuclear receptor are involved in overexpression of CYP321A8 in insecticide-resistant S. exigua.


Assuntos
Resistência a Inseticidas/genética , Inseticidas/farmacologia , Sequências Reguladoras de Ácido Nucleico , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Animais , Sequência de Bases , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Mutação , Regiões Promotoras Genéticas
3.
Ecol Evol ; 10(11): 4816-4827, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551063

RESUMO

The rice striped stem borer (SSB, Chilo suppressalis) is one of the most destructive pests of rice plants. Si-mediated rice defense against various pests has been widely reported, and sodium silicate (SS) has been used as an effective source of silicon for application to plants. However, there is quite limited information about the direct effects of Si application on herbivorous insects. SSB larval performance and their insecticide tolerance were examined after they had been reared either on rice plants cultivated in nutrient solution containing 0.5 and 2.0 mM SS or on artificial diets with 0.1% and 0.5% SS. SS amendment in either rice culture medium or artificial diets significantly suppressed the enzymatic activities of acetylcholinesterase, glutathione S-transferases, and levels of cytochrome P450 protein in the midgut of C. suppressalis larvae. Larvae fed on diets containing SS showed lower insecticide tolerance. Additionally, RNA-seq analysis showed that SS-mediated larval insecticide tolerance was closely associated with fatty acid biosynthesis and pyruvate metabolism pathways. Our results suggest that Si not only enhances plant resistance against insect herbivore, but also impairs the insect's capacity to detoxify the insecticides. This should be considered as another important aspect in Si-mediated plant-insect interaction and may provide a novel approach of pest management.

4.
J Hazard Mater ; 398: 122971, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32512455

RESUMO

Insect cytochrome P450 s (P450 s) are associated with the metabolic detoxification of toxic xenobiotics and their constitutive upregulation is often associated with resistance to natural and synthetic toxicants. The P450 s CYP321A16 and CYP332A1 are constitutively overexpressed in an insecticide-resistant strain of beet armyworm, Spodoptera exigua. However, the function and upstream regulation of these two P450 s remain unknown. Here, we investigated the function of CYP321A16 and CYP332A1 in resistance to the organophosphate insecticide, chlorpyrifos and their regulation by the transcription factors CncC and Maf. Transgenic strains of Drosophila melanogaster expressing CYP321A16 or CYP332A1 showed higher levels of tolerance to chlorpyrifos than the control flies with the same genetic background. Furthermore, recombinant CYP321A16 and CYP332A1 proteins metabolized chlorpyrifos. Analysis of the putative promoter sequences of the genes coding for CYP321A16 and CYP332A1 revealed conserved CncC/Maf binding sites. Transfection of luciferase reporter plasmids containing the promoter of CYP450 gene together with CncC and Maf expression plasmids significantly enhanced the activity of the reporter. Promoter truncation identified a site in the promoter of CYP321A16 that is critical for the CncC/Maf binding. These data demonstrate that resistance to chlorpyrifos in S. exigua is conferred by the combined action of CYP321A16 and CYP332A1 and uncovered their regulation by the transcription factors CncC and Maf.


Assuntos
Clorpirifos , Inseticidas , Fatores de Transcrição , Animais , Clorpirifos/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Resistência a Inseticidas/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Xenobióticos
5.
J Hazard Mater ; 396: 122755, 2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32361135

RESUMO

Pest management, which is critical for global crop productivity, is hampered by rapidly evolving insecticide resistance in insect pests. The ability to manage the development of insecticide resistance is thus vital. Nitric oxide (NO) is a ubiquitous signaling molecule with important functions in a variety of biological processes. Here we show that imidacloprid-resistant brown planthoppers (BPH) are deficient in citrulline and arginine, both of which are involved in NO production, but exogenous citrulline and arginine render resistant BPH vulnerable to imidacloprid. BPH insecticide resistance results from low NO production; exogenous arginine and citrulline augment the NO signaling in BPH, leading to downregulation of CYP6AY1 and CYP6ER1, the cytochrome P450 s that contribute to imidacloprid detoxification, thereby restoring susceptibility. Two amino acids that can be used to restore susceptibility in insecticide-resistant insects are identified, establishing a novel metabolome-based approach for killing insecticide-resistant pests and providing a useful template for managing insecticide resistance.


Assuntos
Hemípteros , Inseticidas , Animais , Arginina , Citrulina , Imidazóis , Inseticidas/toxicidade , Neonicotinoides , Óxido Nítrico , Nitrocompostos
6.
Pestic Biochem Physiol ; 162: 86-95, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31836059

RESUMO

RNA interference (RNAi) efficiency varies among insects. RNAi is highly efficient and systemic in coleopteran insects but quite variable and inefficient in lepidopteran insects. Degradation of double-stranded RNA (dsRNA) by double-stranded ribonucleases (dsRNases) is thought to contribute to the variability in RNAi efficiency observed among insects. One or two dsRNases involved in dsRNA digestion have been identified in a few insects. To understand the contribution of dsRNases to reduced RNAi efficiency in lepidopteran insects, we searched the transcriptome of Spodoptera litura and identified six genes coding for DNA/RNA non-specific endonucleases. Phylogenetic analysis revealed the evolutionary expansion of dsRNase genes in insects. The mRNA levels of three midgut-specific dsRNases increased during the larval stage, and the highest dsRNA-degrading activity was detected in third-instar larvae. Proteins produced via the expression of three midgut-specific dsRNases, and the widely expressed dsRNase3, in a baculovirus system showed dsRNase activity for four out of five dsRNases tested. In addition, the increase in dsRNA-degrading activity and upregulation of dsRNase1 and 2 in larvae fed on cabbage leaves suggests that the diet of S. litura can influence dsRNase expression, dsRNA stability, and thus probably RNAi efficiency. This is the first report that multiple dsRNases function together in an RNAi-recalcitrant insect. The data included in this paper suggest that multiple dsRNases coded by the S. litura genome might contribute to the lower and variable RNAi efficiency reported in this and other lepidopteran insects.


Assuntos
Proteínas de Insetos , Nicotiana , Animais , Insetos , Larva , Filogenia , Interferência de RNA , RNA de Cadeia Dupla , Spodoptera
7.
J Econ Entomol ; 113(1): 399-406, 2020 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-31756251

RESUMO

Laodelphax striatellus (Fallén) is an important rice pest species which has developed high resistance to imidacloprid. Previous studies have demonstrated that CYP6AY3v2 and CYP353D1v2 were constitutively overexpressed in a imidacloprid resistant strain and can metabolize imidacloprid to mediated metabolic resistance. Further studies still needed to explore whether there are other L. striatellus P450 enzymes that can also metabolize imidacloprid. In this study, the expression level of L. striatellus CYP4C71 was significantly upregulated both in laboratory strains and field strains of L. striatellus after imidacloprid treatment for 4 h. The capability of CYP4C71 to metabolize imidacloprid was investigated. The full-length CYP4C71 was cloned, and its open reading frame was 1,515 bp with an enzyme estimated to be 505 amino acid residues in size. Furthermore, CYP4C71 was heterologously expressed along with L. striatellus cytochrome P450 reductase (CPR) in insect cells. A carbon monoxide difference spectra analysis confirmed the successful expression of CYP4C71. The recombinant CYP4C71 showed high P450 O-demethylation activity with PNP as a substrate. In vitro metabolism studies showed that recombinant CYP4C71 can metabolize imidacloprid to an easily excreted hydroxy-form. The rate of imidacloprid depletion in response to imidacloprid concentration revealed Michaelis Menten kinetics (R2 fitted curve = 0.99) with a relative low affinity: Kcat = 0.032 ± 0.009 pmol depleted imidacloprid/min/pmol P450 and Km=85.19 ± 2.93 µM. A relative big Km (85.19 ± 2.93 µM) indicated relative low imidacloprid's affinity for the CYP4C71 enzyme. In conclusion, CYP4C71 was another P450 enzyme that can metabolize imidacloprid with a relatively low affinity.


Assuntos
Hemípteros/efeitos dos fármacos , Inseticidas/farmacologia , Animais , Proteínas de Insetos , Resistência a Inseticidas/efeitos dos fármacos , Neonicotinoides , Nitrocompostos
8.
Pestic Biochem Physiol ; 158: 69-76, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31378363

RESUMO

Sex pheromones are crucial for communication between females and males in moths, and pheromone receptors (PRs) play a key role in peripheral coding of sex pheromones. During the last decade, many PR candidates have been identified based on transcriptome sequencing and bioinformatic analysis, but their detailed functions remain mostly unknown. Here, focusing on four PR candidates of Athetis dissimilis (AdisOR1, AdisOR6, AdisOR11 and AdisOR14) identified in a previous study, we first cloned the full-length cDNAs and determined the tissue expression profiles by quantitative real-time PCR (qPCR). The results revealed that expression of three of these genes were male antennae-specific, while AdisOR11 was similar in expression between male and female antennae. Furthermore, the expression level of AdisOR1 was much higher than those of the other three genes. Then, functional analysis was conducted using Xenopus oocyte system. AdisOR1 responded strongly to the sex pheromone component Z9-14:OH and the potential pheromone component Z9,E12-14:OH, suggesting its important role in the sex pheromone perception; AdisOR14 showed specificity for Z9,E12-14:OH; while AdisOR6 and AdisOR11 did not respond to any of the pheromone components and analogs tested. Taken together, this study contributes to elucidate the molecular mechanism of sex pheromone reception and provides potential targets for development of OR based pest control techniques in A. dissimilis.


Assuntos
Proteínas de Insetos/metabolismo , Lepidópteros/metabolismo , Receptores de Feromônios/metabolismo , Animais , Feminino , Proteínas de Insetos/genética , Lepidópteros/genética , Masculino , Feromônios/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Feromônios/genética
9.
Pestic Biochem Physiol ; 157: 211-218, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31153471

RESUMO

Herbivore attack leads to enhanced production of defensive compounds to mount anti-herbivore defense in plants via activation of the jasmonate signaling pathway. On the other hand, some herbivores can eavesdrop on plants defense signaling and up-regulate their cytochrome P450 genes to increase detoxification of defensive compounds. However, the ecological risk of eavesdropping on plant defense signaling is largely unknown. In this study, we examined the induction of cytochrome P450s by methyl jasmonate (MeJA) and its consequence on the toxicity of aflatoxin B1 (AFB1) to Helicoverpa armigra larvae. The results show that MeJA applications either in a diet or volatile exposure enhanced the toxicity of AFB1 to the larvae. RNA sequences analysis revealed that cytochrome P450 CYP6AE19 was highly induced when MeJA was applied with AFB1. In addition, HaGST encoding glutathione-S-transferase that mainly transforms aflatoxin B1 exo-8,9-epoxide to aflatoxin B1 exo-8,9-glutathione was also induced. RNA interference of CYP6AE19 via injecting a double-stranded RNA decreased mortality of larvae exposed to AFB1; while injecting a double-stranded RNA of HaGST increased larval mortality. Furthermore, a protein model was generated and a subsequent docking simulation for AFB1 suggests the bioactivation as a major mechanism of AFB1. This study provides evidence that MeJA increased larval mortality of H. armigera via induction of CYP6AE19 that can bioactivate AFB1.


Assuntos
Acetatos/farmacologia , Aflatoxina B1/metabolismo , Ciclopentanos/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/metabolismo , Oxilipinas/farmacologia , Animais , Larva/efeitos dos fármacos , Larva/metabolismo , Oxirredução/efeitos dos fármacos
10.
Viruses ; 11(4)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970658

RESUMO

As an invasive weed, Mikaniamicrantha Kunth has caused serious damage to natural forest ecosystems in South China in recent years. Mikania micrantha wilt virus (MMWV), an isolate of the Gentian mosaic virus (GeMV), is transmitted by Myzuspersicae (Sulzer) in a non-persistent manner and can effectively inhibit the growth of M. micrantha. To explore the MMWV-M. micrantha-M. persicae interaction and its impact on the invasion of M. micrantha, volatile compounds (VOCs) emitted from healthy, mock-inoculated, and MMWV-infected plants were collected, and effects on host preference of the apterous and alate aphids were assessed with Y-shaped olfactometers. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that MMWV infection changed the VOC profiles, rendering plants more attractive to aphids. Clip-cages were used to document the population growth rate of M.persicae fed on healthy, mock-inoculated, or MMWV-infected plants. Compared to those reared on healthy plants, the population growth of M. persicae drastically decreased on the MMWV-infected plants. Plant host choice tests based on visual and contact cues were also conducted using alate M.persicae. Interestingly, the initial attractiveness of MMWV-infected plants diminished, and more alate M. persicae moved to healthy plants. Taken together, MMWV appeared to be able to manipulate its plant host to first attract insect vectors to infected plants but then repel viruliferous vectors to promote its own dispersal. Its potential application for invasive weed management is discussed.


Assuntos
Afídeos/fisiologia , Fabavirus/crescimento & desenvolvimento , Comportamento Alimentar/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos , Especificidade de Hospedeiro/efeitos dos fármacos , Mikania/virologia , Feromônios/metabolismo , Animais , Afídeos/efeitos dos fármacos , China , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/fisiologia , Doenças das Plantas/virologia , Compostos Orgânicos Voláteis/metabolismo
11.
Pestic Biochem Physiol ; 154: 32-38, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30765054

RESUMO

Cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), is a polyphagous lepidopteran pest distributed worldwide with a broad spectrum of host plants. However, the mechanism of H. armigera adaptation to various insecticides and defensive allelochemicals in its host plants is not fully understood. Therefore, this study examined the influence of consumption of plant allelochemicals on larval tolerance to methomyl and chlorpyrifos insecticides in H. armigera and its possible mechanism. Twelve plant allelochemicals were screened to evaluate their effects on larval sensitivity to methomyl. Of which flavone, coumarin, DIMBOA (2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one) and visnagin significantly reduced larval sensitivity to methomyl. Application of cytochrome P450 inhibitor piperonyl butoxide (PBO) significantly increased the mortality of methomyl-treated larvae. In contrast, PBO addition significantly decreased the mortality of chlorpyrifos-treated larvae. Moreover, allelochemical consumption enhanced the activities of glutathione S-transferase, carboxylesterase, cytochrome P450 and acetylcholinesterase in the midgut and fat body. The qRT-PCR analysis confirms that P450 genes, CYP6B2, CYP6B6 and CYP6B7 were induced by the four allelochemicals in the midguts and the fat bodies. In conclusion, the generalist H. armigera can take benefit of plant allelochemicals from its host plants to elaborate its defense against insecticides.


Assuntos
Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Feromônios/farmacologia , Compostos Fitoquímicos/farmacologia , Animais , Carboxilesterase/genética , Clorpirifos/toxicidade , Sistema Enzimático do Citocromo P-450/genética , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa Transferase/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Larva/genética , Masculino , Metomil/toxicidade , Mariposas/genética
12.
Chem Biodivers ; 16(1): e1800344, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30358064

RESUMO

The actinomycete genus Streptomyces is characterized by producing bioactive secondary metabolites, including antibiotics. In this study, chemical and biological investigations were carried out on Streptomyces strain 4205 isolated from the paddy soil, leading to the identification and characterization of 10 albocycline-type macrolides, among which 4 compounds were new, namely albocyclines A-D (1-4). The structures of 1-10 were identified according to the 1D- and 2D-NMR spectroscopic data. Furthermore, compounds 1-10 were evaluated for antimicrobial activity. Compounds 5-7 displayed antimicrobial activities against Candidaalbicans ATCC 90028 with the same MIC value of 10.0 mg/mL and the IC50 values of 1.5, 1.0, and 1.0 mg/mL, respectively. Thus, the research on Streptomyces sp. is of vital significance for developing new antibiotic agents.


Assuntos
Antibacterianos/farmacologia , Streptomyces/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Bactérias/classificação , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cryptococcus neoformans/efeitos dos fármacos , Meios de Cultura , Fermentação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Concentração Inibidora 50 , Lactonas/química , Lactonas/isolamento & purificação , Lactonas/farmacologia , Testes de Sensibilidade Microbiana , Microbiologia do Solo , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
13.
Insect Sci ; 26(4): 711-720, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30239122

RESUMO

Herbicides and insecticides are widely used in modern agriculture. It has been reported in various studies that application of insecticides can increase tolerance of herbivorous insects to insecticides. However, limited information exists on susceptibility to insecticides when insects are exposed to herbicides. This study was conducted to investigate the potential impact of the herbicides trifluralin and 2-methyl-4-chlorophenoxyacetic acid sodium salt (MCPA-Na) on the susceptibility of the nocturnal moth Spodoptera litura to the insecticides λ-cyhalothrin, phoxim and bifenthrin. We found that larvae exposed to trifluralin or MCPA-Na became significantly less susceptible to both insecticides than non-exposed control larvae. Herbicide-treated larvae did not show altered growth under the used test conditions. However, heads of herbicide-treated larvae showed increased expression of the acetylcholinesterase genes SlAce1 and SlAce2. Moreover, the fat body and midgut of herbicide-treated larvae displayed elevated expression of detoxification genes (the carboxylesterase gene SlCarE; the glutathione S-transferase genes SlGSTe2 and SlGSTe3; the cytochrome P450 monooxygenase genes CYP6B48, CYP9A40 and CYP321B1). The CYP6B48 gene exhibited highest inducibility. In conclusion, the data of this study suggest that exposure of S. litura larvae to herbicides may stimulate detoxification mechanisms that compromise the efficacy of insecticides.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Inseticidas , Spodoptera/efeitos dos fármacos , Trifluralina , Acetilcolinesterase/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Expressão Gênica/efeitos dos fármacos , Genes de Insetos , Glutationa Transferase/metabolismo , Inativação Metabólica , Larva/efeitos dos fármacos , Larva/enzimologia , Spodoptera/enzimologia , Testes de Toxicidade
14.
Arch Insect Biochem Physiol ; 100(2): e21525, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30511429

RESUMO

Deltamethrin resistance in Laodelphax striatellus had been associated with its oxidative detoxification by overexpression of four cytochrome P450 monooxygenases like CYP353D1v2, CYP6FU1, CYP6AY3v2, and CYP439A1v3. The first three P450s have been validated for insecticide-metabolizing capability and only CYP6FU1 was found to degrade deltamethrin. In this study, an investigation was conducted to confirm the capability of CYP439A1v3 to degrade deltamethrin. The CYP439A1v3 was first expressed in Sf9 cell line and its recombinant enzyme was tested for metabolic activity against different insecticides using substrate depletion assay combined with metabolite identification. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and carbon monoxide (CO)-difference spectra analysis showed that the intact cytochrome P450 protein was successfully expressed. Tests with probe substrates proved its enzyme activity, as p-nitroanisole, ethoxycoumarin, and ethoxyresorufin were preferentially metabolized (specific activity 7.767 ± 1.22, 1.325 ± 0.37, and 0.355 ± 0.37 nmol/min per mg of protein, respectively) while only luciferin-HEGE was not. In vitro incubation of the recombinant CYP439A1v3 protein with deltamethrin revealed hydroxylation by producing hydroxydeltamethrin. On the contrary, no metabolite/metabolism was seen with nonpyrethroid insecticide, including imidacloprid, buprofezin, chlorpyrifos, and fipronil. To the best of our knowledge, this is the first study to link a CYP450 from family 439 to confer pyrethroid resistance to L. striatellus. This finding should help in the design of appropriate insecticide resistance management for control of this strain of L. striatellus.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Hemípteros/efeitos dos fármacos , Hemípteros/genética , Proteínas de Insetos/metabolismo , Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Estrutura Molecular , Nitrilas/química , Nitrilas/metabolismo , Piretrinas/química , Piretrinas/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-30005390

RESUMO

The oriental armyworm Mythimna separata is a serious polyphagous pest in China and there are major efforts to control this pest. In the present study, an RNA-Seq method was used to explore transcriptome data of M. separata and identify the responses of genes to chlorantraniliprole. Sequencing and de novo assembly yielded 134,533 transcripts that were further assembled into 77,628 unigenes with an N50 length of 2165 bp. A total of 76 unigenes encoding insecticide targets were identified. Furthermore, 62 cytochrome P450s, 34 glutathione S-transferase (GSTs)and 64 carboxylesterase (CCEs) were curated to construct phylogenetic trees. In addition, we identified 647 the differentially expressed genes following treatment with chlorantraniliprole. The pathways of calcium signaling was identified as response to the pesticide The transcriptome data we generated represents a comprehensive genomic resource for further studies focused on control of M. separata. The response of genes to chlorantraniliprole treatment will elucidate the molecular mechanisms of insecticide resistance and allow for the development of new chemical pesticides to control this pest.


Assuntos
Genes de Insetos/efeitos dos fármacos , Inseticidas/toxicidade , Lepidópteros/efeitos dos fármacos , Lepidópteros/genética , Transcriptoma/efeitos dos fármacos , ortoaminobenzoatos/toxicidade , Animais , Carboxilesterase/genética , Sistema Enzimático do Citocromo P-450/genética , Glutationa Transferase/genética , Proteínas de Insetos/genética , Resistência a Inseticidas , Filogenia
16.
Environ Sci Pollut Res Int ; 25(10): 10006-10013, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29380196

RESUMO

Insecticide resistance is a major challenge in successful insect pest control as the insects have the ability to develop resistance to various widely used insecticides. Butene-fipronil is a novel compound with high toxicity to insects and less toxicity to the non-target organisms. In the present study, the effect of butene-fipronil alone and in combination with three enzyme inhibitors, piperonyl butoxide (PBO), diethyl maleate (DEM), and triphenyl phosphate (TPP), was carried out on larvae and adults of Drosophilia melanogaster. Our results indicated that the co-toxicity indices of butene-fipronil + PBO, butene-fipronil + TPP, and butene-fipronil + DEM mixtures were 437.3, 335.0, and 210.3, respectively, in the second-instar larvae, while 186.6, 256.2, and 238.5, respectively, in the adults, indicating synergistic effects. Interestingly, butene-fipronil increased the expression of CYP28A5 in the larvae; CYP9F2, CYP304A1, CYP28A5, and CYP318A1 in the female adults; and CYP303A1 and CYP28A5 in the male adults. Furthermore, high-level expression of Est-7 was observed in the female adults compared to larvae and male adults. Our results suggest that there is no difference in butene-fipronil metabolism in larvae and male and female adults of D. melanogaster.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hidrocarbonetos Halogenados/farmacologia , Inseticidas/farmacologia , Maleatos/farmacologia , Organofosfatos/farmacologia , Butóxido de Piperonila/farmacologia , Pirazóis/farmacologia , Animais , Drosophila melanogaster/metabolismo , Interações Medicamentosas , Inativação Metabólica , Controle de Insetos , Resistência a Inseticidas , Larva/efeitos dos fármacos , Larva/metabolismo
17.
Pest Manag Sci ; 74(6): 1265-1271, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29194952

RESUMO

BACKGROUND: Cytochrome P450s (CYPs) are known to play a major role in metabolizing a wide range compounds. CYP6FU1 has been found to be over-expressed in a deltamethrin-resistant strain of Laodelphax striatellus. This study was conducted to express CYP6FU1 in Sf9 cells as a recombinant protein, to confirm its ability to degrade deltamethrin, chlorpyrifos, imidacloprid and traditional P450 probing substrates. RESULTS: Carbon monoxide difference spectrum analysis indicated that the intact CYP6FU1 protein was expressed in insect Sf9 cells. Catalytic activity tests with four traditional P450 probing substrates revealed that the expressed CYP6FU1 preferentially metabolized p-nitroanisole and ethoxyresorufin, but not ethoxycoumarin and luciferin-HEGE. The enzyme kinetic parameters were tested using p-nitroanisole. The michaelis constant (Km ) and catalytic constant (Kcat ) values were 17.51 ± 4.29 µm and 0.218 ± 0.001 pmol min-1 mg-1 protein, respectively. Furthermore, CYP6FU1 activity for degradation of insecticides was tested by measuring substrate depletion and metabolite formation. The chromatogram analysis showed obvious nicotinamide-adenine dinucleotide phosphate (NADPH)-dependent depletion of deltamethrin, and formation of the unknown metabolite. Mass spectra and the molecular docking model showed that the metabolite was 4-hydroxy-deltamethrin. However, the recombinant CYP6FU1 could not metabolize imidacloprid and chlorpyrifos. CONCLUSION: These results confirmed that the over-expressed CYP6FU1 contributes to deltamethrin resistance in L. striatellus, and p-nitroanisole might be a potential diagnostic probe for deltamethrin metabolic resistance detection and monitoring. © 2017 Society of Chemical Industry.


Assuntos
Família 6 do Citocromo P450/genética , Hemípteros/fisiologia , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Nitrilas/metabolismo , Piretrinas/metabolismo , Animais , Clorpirifos/metabolismo , Família 6 do Citocromo P450/metabolismo , Hemípteros/enzimologia , Hemípteros/genética , Proteínas de Insetos/metabolismo , Neonicotinoides/metabolismo , Nitrocompostos/metabolismo , Células Sf9
18.
Int J Mol Sci ; 18(12)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29186030

RESUMO

CYP353D1v2 is a cytochrome P450 related to imidacloprid resistance in Laodelphax striatellus. This work was conducted to examine the ability of CYP353D1v2 to metabolize other insecticides. Carbon monoxide difference spectra analysis indicates that CYP353D1v2 was successfully expressed in insect cell Sf9. The catalytic activity of CYP353D1v2 relating to degrading buprofezin, chlorpyrifos, and deltamethrin was tested by measuring substrate depletion and analyzing the formation of metabolites. The results showed the nicotinamide-adenine dinucleotide phosphate (NADPH)-dependent depletion of buprofezin (eluting at 8.7 min) and parallel formation of an unknown metabolite (eluting 9.5 min). However, CYP353D1v2 is unable to metabolize deltamethrin and chlorpyrifos. The recombinant CYP353D1v2 protein efficiently catalyzed the model substrate p-nitroanisole with a maximum velocity of 9.24 nmol/min/mg of protein and a Michaelis constant of Km = 6.21 µM. In addition, imidacloprid was metabolized in vitro by the recombinant CYP353D1v2 microsomes (catalytic constant Kcat) 0.064 pmol/min/pmol P450, Km = 6.41 µM. The mass spectrum of UPLC-MS analysis shows that the metabolite was a product of buprofezin, which was buprofezin sulfone. This result provided direct evidence that L. striatellus cytochrome P450 CYP353D1v2 is capable of metabolizing imidacloprid and buprofezin.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Tiadiazinas/metabolismo , Animais , Hemípteros/efeitos dos fármacos , Hemípteros/metabolismo
19.
Ecol Evol ; 7(14): 5032-5040, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28770044

RESUMO

Cytochrome P450 monooxygenases (CYPs) usually overexpressed in resistant strain were found involved in oxidative detoxification of insecticides. In this study, an investigation was conducted to confirm if resistance irrelevant CYPs which were not overexpressed in resistant strain before, were capable of degrading insecticides. Three resistance irrelevant CYPs viz. CYP417A2v2, CYP425A1v2, and CYP4DJ1 from CYP4 family of Laodelphax striatellus were randomly selected for experiments. CYP417A2v2 and CYP425A1v2 were found expressed successfully in Sf9 cell line while CYP4DJ1 was not expressed successfully and out of two expressed CYPs, only CYP417A2v2 showed its efficient catalytic activity. For catalytic activity, three traditional model probe substrates and five insecticides were assayed. For the probe substrates screened, p-nitroanisole and ethoxycoumarin were preferentially metabolized by CYP417A2v2 (specific activity 3.76 ± 1.22 and 1.63 ± 0.37 nmol min-1 mg protein-1, respectively) and they may be potential diagnostic probes for this enzyme. Among insecticides, only imidacloprid was efficiently degraded by CYP417A2v2. Incubation of imidacloprid with CYP417A2v2 of L. striatellus and subsequent HPLC, LC-MS, and MS/MS analysis revealed the formation of imidacloprid metabolites, that is, 4' or 5'hydroxy-imidacloprid by hydroxylation. This result implies the exemption of CYPs character that it is not always, all the CYPs degrading insecticides being selected and overexpressed in resistant strains and the degrading CYPs without mutations to upregulate could be candidates during insecticide resistance evolution. This characterization of individual insect CYPs in insecticide degradation can provide insight for better understand of insecticide resistance development.

20.
Pest Manag Sci ; 73(7): 1358-1363, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28296046

RESUMO

BACKGROUND: Cytochrome P450s are associated with the metabolising of a wide range of compounds, including insecticides. CYP353D1v2 has been found to be overexpressed in an imidacloprid-resistant strain of Laodelphax striatellus. Thus, this study was conducted to express CYP353D1v2 in Sf9 cells as a recombinant protein, to assess its ability to metabolise imidacloprid. RESULTS: Western blot and carbon monoxide difference spectrum analysis indicated that the intact CYP353D1v2 protein had been successfully expressed in Sf9 insect cells. Catalytic activity tests with four traditional P450-activity-probing substrates found that the expressed CYP353D1v2 preferentially metabolised p-nitroanisole, ethoxycoumarin and ethoxyresorufin with specific activities of 32.70, 0.317 and 1.22 pmol min-1 pmol-1 protein respectively, but no activity to luciferin-H EGE. The enzyme activity for degrading imidacloprid was tested by measuring substrate depletion and formation of the metabolite. Kinetic parameters for imidacloprid were Km 5.99 ± 0.95 µm and kcat 0.03 ± 0.0004 min-1 . The chromatogram analysis showed clearly the NADPH-dependent depletion of imidacloprid and the formation of an unknown metabolite. The UPLC-MS mass spectrum demonstrated that the metabolite was an oxidative product of imidacloprid, 5-hydroxy-imidacloprid. CONCLUSION: These results suggest that CYP353D1v2 in L. striatellus is capable of degrading imidacloprid, and that enzyme activity can be evaluated well only by some traditional probing substrates. © 2017 Society of Chemical Industry.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hemípteros/enzimologia , Resistência a Inseticidas , Neonicotinoides/metabolismo , Nitrocompostos/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Hemípteros/genética , Inativação Metabólica/genética , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Células Sf9 , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...