Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(20): 7981-7995, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34596724

RESUMO

In this study, we examined a synthetic microbial consortium, composed of two selected bacteria, i.e., Citrobacter freundii so4 and Sphingobacterium multivorum w15, next to the fungus Coniochaeta sp. 2T2.1, with respect to their fate and roles in the degradation of wheat straw (WS). A special focus was placed on the effects of pH (7.2, 6.2, or 5.2), temperature (25 versus 28 °C), and shaking speed (60 versus 180 rpm). Coniochaeta sp. 2T2.1 consistently had a key role in the degradation process, with the two bacteria having additional roles. Whereas temperature exerted only minor effects on the degradation, pH and shaking speed were key determinants of both organismal growth and WS degradation levels. In detail, the three-partner degrader consortium showed significantly higher WS degradation values at pH 6.2 and 5.2 than at pH 7.2. Moreover, the two bacteria revealed up to tenfold enhanced final cell densities (ranging from log8.0 to log9.0 colony forming unit (CFU)/mL) in the presence of Coniochaeta sp. 2T2.1 than when growing alone or in a bacterial bi-culture, regardless of pH range or shaking speed. Conversely, at 180 rpm, fungal growth was clearly suppressed by the presence of the bacteria at pH 5.2 and pH 6.2, but not at pH 7.2. In contrast, at 60 rpm, the presence of the bacteria fostered fungal growth. In these latter cultures, oxygen levels were significantly lowered as compared to the maximal levels found at 180 rpm (about 5.67 mg/L, ~ 62% of saturation). Conspicuous effects on biomass appearance pointed to a fungal biofilm-modulating role of the bacteria.Key points• Coniochaeta sp. 2T2.1 has a key role in wheat straw (WS) degradation.• Bacterial impact shifts when conditions change.• pH and shaking speed are key drivers of the growth dynamics and WS degradation.


Assuntos
Ascomicetos , Consórcios Microbianos , Lignina , Sphingobacterium
2.
Planta ; 242(4): 813-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25968467

RESUMO

MAIN CONCLUSION: Blue light signalling pathway in broad bean leaf epidermal cells includes key membrane transporters: plasma- and endomembrane channels and pumps of H (+) , Ca (2+) and K (+) ions, and plasma membrane redox system. Blue light signalling pathway in epidermal tissue isolated from the abaxial side of fully developed Vicia faba leaves was dissected by measuring the effect of inhibitors of second messengers on net K(+), Ca(2+) and H(+) fluxes using non-invasive ion-selective microelectrodes (the MIFE system). Switching the blue light on-off caused transient changes of the ion fluxes. The effects of seven groups of inhibitors were tested in this study: CaM antagonists, ATPase inhibitors, Ca(2+) anatagonists or chelators, agents affecting IP3 formation, redox system inhibitors, inhibitors of endomembrane Ca(2+) transport systems and an inhibitor of plasma membrane Ca(2+)-permeable channels. Most of the inhibitors had a significant effect on steady-state (basal) net fluxes, as well as on the magnitude of the transient ion flux responses to blue light fluctuations. The data presented in this study suggest that redox signalling and, specifically, plasma membrane NADPH oxidase and coupled Ca(2+) and K(+) fluxes play an essential role in blue light signal transduction.


Assuntos
Luz , Folhas de Planta/metabolismo , Transdução de Sinais , Cátions/metabolismo , Membrana Celular/metabolismo , Oxirredução
3.
PLoS One ; 9(1): e79991, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416125

RESUMO

Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form ((15)N-ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5-6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands.


Assuntos
Nitrogênio/metabolismo , Sphagnopsida/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Compostos de Amônio/metabolismo , Cinética , Modelos Lineares , Modelos Biológicos , Nitrogênio/farmacologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Fatores de Tempo
4.
Plant Physiol ; 155(4): 2049-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21282405

RESUMO

In Arabidopsis (Arabidopsis thaliana; Columbia-0) roots, the so-called zone of cell elongation comprises two clearly different domains: the transition zone, a postmeristematic region (approximately 200-450 µm proximal of the root tip) with a low rate of elongation, and a fast elongation zone, the adjacent proximal region (450 µm away from the root tip up to the first root hair) with a high rate of elongation. In this study, the surface pH was measured in both zones using the microelectrode ion flux estimation technique. The surface pH is highest in the apical part of the transition zone and is lowest at the basal part of the fast elongation zone. Fast cell elongation is inhibited within minutes by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid; concomitantly, apoplastic alkalinization occurs in the affected root zone. Fusicoccin, an activator of the plasma membrane H(+)-ATPase, can partially rescue this inhibition of cell elongation, whereas the inhibitor N,N'-dicyclohexylcarbodiimide does not further reduce the maximal cell length. Microelectrode ion flux estimation experiments with auxin mutants lead to the final conclusion that control of the activity state of plasma membrane H(+)-ATPases is one of the mechanisms by which ethylene, via auxin, affects the final cell length in the root.


Assuntos
Aminoácidos Cíclicos/metabolismo , Arabidopsis/citologia , Crescimento Celular , Raízes de Plantas/citologia , Arabidopsis/metabolismo , Dicicloexilcarbodi-Imida/farmacologia , Glicosídeos/farmacologia , Concentração de Íons de Hidrogênio , Microeletrodos , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo
5.
Plant J ; 43(4): 597-610, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16098112

RESUMO

The semi-aquatic dicot Rumex palustris responds to complete submergence by enhanced elongation of young petioles. This elongation of petiole cells brings leaf blades above the water surface, thus reinstating gas exchange with the atmosphere and increasing survival in flood-prone environments. We already know that an enhanced internal level of the gaseous hormone ethylene is the primary signal for underwater escape in R. palustris. Further downstream, concentration changes in abscisic acid (ABA), gibberellin (GA) and auxin are required to gain fast cell elongation under water. A prerequisite for cell elongation in general is cell wall loosening mediated by proteins such as expansins. Expansin genes might, therefore, be important target genes in submergence-induced and plant hormone-mediated petiole elongation. To test this hypothesis we have studied the identity, kinetics and regulation of expansin A mRNA abundance and protein activity, as well as examined pH changes in cell walls associated with this adaptive growth. We found a novel role of ethylene in triggering two processes affecting cell wall loosening during submergence-induced petiole elongation. First, ethylene was shown to promote fast net H(+) extrusion, leading to apoplastic acidification. Secondly, ethylene upregulates one expansin A gene (RpEXPA1), as measured with real-time RT-PCR, out of a group of 13 R. palustris expansin A genes tested. Furthermore, a significant accumulation of expansin proteins belonging to the same size class as RpEXPA1, as well as a strong increase in expansin activity, were apparent within 4-6 h of submergence. Regulation of RpEXPA1 transcript levels depends on ethylene action and not on GA and ABA, demonstrating that ethylene evokes at least three, parallel operating pathways that, when integrated at the whole petiole level, lead to coordinated underwater elongation. The first pathway involves ethylene-modulated changes in ABA and GA, these acting on as yet unknown downstream components, whereas the second and third routes encompass ethylene-induced apoplastic acidification and ethylene-induced RpEXPA1 upregulation.


Assuntos
Etilenos/farmacologia , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/biossíntese , Rumex/metabolismo , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Ácidos Naftalenoacéticos/farmacologia , Rumex/efeitos dos fármacos , Rumex/crescimento & desenvolvimento , Fatores de Tempo , Transcrição Gênica/fisiologia , Triazóis/farmacologia , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...