Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6399, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493214

RESUMO

Commercial ion-exchange membranes are typically thick, possessing limited mechanical strength, and have relatively high fabrication costs. In this study, we utilize a three-layer polypropylene fabric known as Spunbond Meltblown Spunbond (SMS) as the substrate. This choice ensures that the resulting membrane exhibits high strength and low thickness. SMS substrates with various area densities, including 14.5, 15, 17, 20, 25, and 30 g/m2, were coated with different concentrations of waste polystyrene solution (ranging from 5 × 104 to 9 × 104 mg/l) before undergoing sulfonation using concentrated sulfuric acid. The physicochemical and mechanical properties of the membrane were characterized and compared with those of commercial Neosepta CMX and Nafion-117 cation-exchange membranes. Remarkably, the fabricated membrane exhibited good performance compared to commercial ones. The cation-exchange capacity (2.76 meq/g) and tensile strength (37.15 MPa) were higher, and the electrical resistance (3.603Ω) and the thickness (130 µm) were lower than the commercial membranes.

2.
Membranes (Basel) ; 13(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367781

RESUMO

This study explored the use of a combination of hydrothermal and sol-gel methods to produce porous titanium dioxide (PTi) powder with a high specific surface area of 112.84 m2/g. The PTi powder was utilized as a filler in the fabrication of ultrafiltration nanocomposite membranes using polysulfone (PSf) as the polymer. The synthesized nanoparticles and membranes were analyzed using various techniques, including BET, TEM, XRD, AFM, FESEM, FTIR, and contact angle measurements. The membrane's performance and antifouling properties were also assessed using bovine serum albumin (BSA) as a simulated wastewater feed solution. Furthermore, the ultrafiltration membranes were tested in the forward osmosis (FO) system using a 0.6-weight-percent solution of poly (sodium 4-styrene sulfonate) as the osmosis solution to evaluate the osmosis membrane bioreactor (OsMBR) process. The results revealed that the incorporation of PTi nanoparticles into the polymer matrix enhanced the hydrophilicity and surface energy of the membrane, resulting in better performance. The optimized membrane containing 1% PTi displayed a water flux of 31.5 L/m2h, compared to the neat membrane water value of 13.7 L/m2h. The membrane also demonstrated excellent antifouling properties, with a flux recovery of 96%. These results highlight the potential of the PTi-infused membrane as a simulated osmosis membrane bioreactor (OsMBR) for wastewater treatment applications.

3.
Environ Monit Assess ; 195(6): 668, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37178265

RESUMO

Reverse osmosis and nanofiltration (NF) are the essential physical separation technologies used to remove contaminants from liquid streams. A hybrid of nanofiltration and forward osmosis (FO) was used to increase the removal efficiency of heavy metals in synthesized oil effluents. Thin-film nanocomposite (TFN) membranes were synthesized by applying surface polymerization on a polysulfone substrate to use in the forward osmosis process. The impact of different membrane fabrication conditions such as time, temperature, and pressure on effluent flux, the effect of different concentrations of the heavy metal solution on adsorption rate and sedimentation rate, the impact of TiO2 nanoparticles on the performance and structure of forward osmosis membranes were investigated. The morphology, composition, and properties of TiO2 nanocomposites made by the infrared spectrometer and X-ray diffraction (XRD) were studied. Kinetic modeling and Langmuir, Freundlich, and Tamkin relationships were used to draw adsorption isotherms and evaluate adsorption equilibrium data. The results indicated that pressure and temperature directly affect water outlet flux, and time affects it indirectly. Evaluating the isothermal relationships revealed that chromium adsorption from the TFN 0.05 ppm membrane and thin-film composite (TFC) membrane follows the Langmuir model with correlation coefficients of 0.996 and 0.995, respectively. The significant removal of heavy metals and the acceptable amount of water flux demonstrated the appropriate potential of the titanium oxide nanocomposite membrane, which can be used as an effective adsorbent to remove chromium from aqueous solutions.


Assuntos
Metais Pesados , Nanocompostos , Cromo , Adsorção , Monitoramento Ambiental , Água/química , Nanocompostos/química
4.
Membranes (Basel) ; 13(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37103840

RESUMO

Many studies indicated that phthalates, a common plasticizer, lurk silently in water bodies and can potentially harm living organisms. Therefore, removing phthalates from water sources prior to consumption is crucial. This study aims to evaluate the performance of several commercial nanofiltrations (NF) (i.e., NF3 and Duracid) and reverse osmosis (RO) membranes (i.e., SW30XLE and BW30) in removing phthalates from simulated solutions and further correlate the intrinsic properties of membranes (e.g., surface chemistry, morphology, and hydrophilicity) with the phthalates removal. Two types of phthalates, i.e., dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP), were used in this work, and the effects of pH (ranging from 3 to 10) on the membrane performance were studied. The experimental findings showed that the NF3 membrane could yield the best DBP (92.5-98.8%) and BBP rejection (88.7-91.7%) regardless of pH, and these excellent results are in good agreement with the surface properties of the membrane, i.e., low water contact angle (hydrophilicity) and appropriate pore size. Moreover, the NF3 membrane with a lower polyamide cross-linking degree also exhibited significantly higher water flux compared to the RO membranes. Further investigation indicated that the surface of the NF3 membrane was severely covered by foulants after 4-h filtration of DBP solution compared to the BBP solution. This could be attributed to the high concentration of DBP presented in the feed solution owing to its high-water solubility (13 ppm) compared to BBP (2.69 ppm). Further research is still needed to study the effect of other compounds (e.g., dissolved ions and organic/inorganic matters that might be present in water) on the performance of membranes in removing phthalates.

5.
Membranes (Basel) ; 13(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36837748

RESUMO

Incorporating nanoparticles (NPs) into the selective layer of thin-film composite (TFC) membranes is a common approach to improve the performance of the resulting thin-film nanocomposite (TFN) membranes. The main challenge in this approach is the leaching out of NPs during membrane operation. Halloysite nanotubes (HNTs) modified with the first generation of poly(amidoamine) (PAMAM) dendrimers (G1) have shown excellent stability in the PA layer of TFN reverse-osmosis (RO) membranes. This study explores, for the first time, using these NPs to improve the properties of TFN nanofiltration (NF) membranes. Membrane performance was evaluated in a cross-flow nanofiltration (NF) system using 3000 ppm aqueous solutions of MgCl2, Na2SO4 and NaCl, respectively, as feed at 10 bar and ambient temperature. All membranes showed high rejection of Na2SO4 (around 97-98%) and low NaCl rejection, with the corresponding water fluxes greater than 100 L m-2 h-1. The rejection of MgCl2 (ranging from 82 to 90%) was less than that for Na2SO4. However, our values are much greater than those reported in the literature for other TFN membranes. The remarkable rejection of MgCl2 is attributed to positively charged HNT-G1 nanoparticles incorporated in the selective polyamide (PA) layer of the TFN membranes.

6.
Membranes (Basel) ; 12(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36557177

RESUMO

Forward osmosis (FO) is an emerging technology for seawater and brackish desalination, wastewater treatment, and other applications, such as food processing, power generation, and protein and pharmaceutical enrichment. However, choosing a draw solute (DS) that provides an appropriate driving force and, at the same time, is easy to recover, is challenging. In this study, water-soluble poly(styrene sulfonate) (PSS) was modified by a high-electrical-conductivity 3,4-ethylenedioxythiophene (EDOT) monomer to fabricate a novel draw solute (mPSS). FO tests with the CTA membrane in the active layer facing the feed solution (AL-FS) orientation, using a 50 mS/cm aqueous solution of synthesized solute and distilled water as a feed solution exhibited a water flux of 4.2 L h-1 m-2 and a corresponding reverse solute flux of 0.19 g h-1 m-2. The FO tests with the same membrane, using a 50 mS/cm NaCl control draw solution, yielded a lower water flux of 3.6 L h-1 m-2 and a reverse solute flux of 4.13 g h-1 m-2, which was more than one order of magnitude greater. More importantly, the synthesized draw solute was easily regenerated using a commercial ultrafiltration membrane (PS35), which showed over 96% rejection.

7.
Environ Res ; 183: 109278, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32311912

RESUMO

The water sources contaminated by toxic dyes would pose a serious problem for public health. In view of this, the development of a simple yet effective method for removing dyes from industrial effluent has attracted interest from researchers. In the present work, flat sheet mixed matrix membranes (MMMs) with different physiochemical properties were fabricated by blending P84 polyimide with different concentrations of cadmium-based metal organic frameworks (MOF-2(Cd)). The resultant membranes were then used for simultaneous removal of eosin y (EY), sunset yellow (SY) and methylene blue (MB) under various process conditions. The findings indicated that the membranes could achieve high water permeability (117.8-171.4 L/m2.h.bar) and promising rejection for simultaneous dyes removal, recording value of 99.9%, 81.2% and 68.4% for MB, EY and SY, respectively. When 0.2 wt% MOF-2(Cd) was incorporated into the membrane matrix, the membrane separation efficiency was improved by 110.2% and 213.3% for EY and SY removal, respectively when compared with the pristine membrane. In addition, the optimization and modeling of membrane permeate flux and dye rejection was explored using response surface methodology. The actual and model results are in good agreement with R2 of at least 0.9983 for dye rejection and permeate flux. The high flux of the developed MMMs coupled with effective separation of dyes suggests a promising prospect of using P84 polyimide MMMs incorporated with MOF-2(Cd) for water purification.


Assuntos
Cádmio , Estruturas Metalorgânicas , Purificação da Água , Corantes , Filtração
8.
Carbohydr Polym ; 225: 115212, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31521264

RESUMO

In this work, nanocomposite ultrafiltration (UF) membranes were synthesized through addition of different quantities of amino-functionalized nanocrystalline cellulose (NCs) in order to improve membrane anti-fouling resistance against oil depositions. The characterization results demonstrated that the overall porosity and hydrophilicity of the membranes were improved significantly upon addition of NCs despite a decrease in the pore size of nanocomposite membranes. The UF performance results showed that the nanocomposite membrane incorporated with 1 wt% NCs achieved an optimal water flux improvement, i.e., approximately 43% higher than the pristine membrane. Such nanocomposite membrane also exhibited promising oil rejection (>98.2%) and excellent water flux recovery rate of ˜98% and ˜85% after one and four cycles of treating 250-ppm oil-in-water emulsion solution, respectively. The desirable anti-fouling properties of nanocomposite membrane can be attributed to the existence of hydrophilic functional groups (-OH) on the surface of membrane stemming from addition of NCs that renders the membrane less vulnerable to fouling during oil-in-water emulsion treatment.


Assuntos
Celulose/química , Nanocompostos/química , Águas Residuárias/química , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Permeabilidade , Porosidade , Ultrafiltração , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...