Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Dev Res ; 84(5): 888-906, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37052308

RESUMO

Two series of quinazolinone derivatives were designed and synthesized as dihydrofolate reductase (DHFR) inhibitors. All compounds were evaluated for their antibacterial and antitumor activities. Antibacterial activity was evaluated against three strains of Gram-positive and Gram-negative bacteria. Compound 3d exhibited the highest inhibitory activity against Staphylococcus aureus DHFR (SaDHFR) with IC50 of 0.769 ± 0.04 µM compared to 0.255 ± 0.014 µM for trimethoprim. Compound 3e was also more potent than trimethoprim against Escherichia coli DHFR (EcDHFR) with IC50 of 0.158 ± 0.01 µM and 0.226 ± 0.014 µM, respectively. Compound 3e exhibited a promising antiproliferative effect against most of the tested cancer cells. It also showed potent activity against leukemia (CCRF-CEM, and RPMI-8226); lung NCI-H522, and CNS U251 with GI% of 65.2, 63.22, 73.28, and 97.22, respectively. The cytotoxic activity of compound 3e was almost half the activity of doxorubicin against CCRF-CEM cell line with IC50 of 1.569 ± 0.06 µM and 0.822 ± 0.03 µM, respectively. In addition, compound 3e inhibited human DHFR with IC50 value of 0.527 ± 0.028 µM in comparison to methotrexate (IC50 = 0.118 ± 0.006 µM). Compound 3e caused an arrest of the cell cycle mainly at the S phase and caused a rise in the overall apoptotic percentage from 2.03% to 48.51%. (23.89-fold). Treatment of CCRF-CEM cells with compound 3e produced a significant increase in the active caspase-3 level by 6.25-fold compared to untreated cells. Molecular modeling studies were performed to evaluate the binding pattern of the most active compounds in the bacterial and human DHFR.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Humanos , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Antibacterianos/química , Quinazolinonas/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Antineoplásicos/química , Trimetoprima/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Simulação de Acoplamento Molecular
2.
Drug Dev Res ; 84(3): 433-457, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779381

RESUMO

A series of coumarin derivatives were designed, synthesized, and evaluated for their antiproliferative activity. Compound 3e exhibited significant antiproliferative activity and was further evaluated at five doses at the National Cancer Institute. It effectively inhibited vascular endothelial growth factor receptor-2 (VEGFR-2) with an IC50 value of 0.082 ± 0.004 µM compared with sorafenib. While compound 3e significantly downregulated total VEGFR-2 and its phosphorylation, it markedly reduced the HUVEC's migratory potential, resulting in a significant disruption in wound healing. Furthermore, compound 3e caused a 22.51-fold increment in total apoptotic level in leukemia cell line HL-60(TB) and a 6.91-fold increase in the caspase-3 level. Compound 3e also caused cell cycle arrest, mostly at the G1/S phase. Antibacterial activity was evaluated against Gram-positive and Gram-negative bacterial strains. Compound 3b was the most active derivative, with the same minimum inhibitory concentration and minimum bactericidal concentration value of 128 µg/mL against K. pneumonia and high stability in mammalian plasma. Moreover, compounds 3b and 3f inhibited Gram-negative DNA gyrase with IC50 = 0.73 ± 0.05 and 1.13 ± 0.07 µM, respectively, compared to novobiocin with an IC50 value of 0.17 ± 0.02 µM. The binding affinity and pattern of derivative 3e toward the VEGFR-2 active site and compounds 3a-c and 3f in the DNA gyrase active site were evaluated using molecular modeling. Overall, ADME studies of the synthesized coumarin derivatives displayed promising pharmacokinetic properties.


Assuntos
Antineoplásicos , DNA Girase , Antibacterianos/química , Antineoplásicos/química , Proliferação de Células , Cumarínicos/farmacologia , DNA Girase/metabolismo , DNA Girase/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Humanos
3.
Bioorg Chem ; 133: 106427, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841046

RESUMO

Cancer is a global health challenge that remains to be a field of extensive research aiming to find new anticancer therapeutics. The 20S proteasome complex is one of the targets of anticancerdrugs, as it is correlated with several cancer types. Herein, we aim to discuss the 20S proteasome subunits and investigatethe currently studied proteasome inhibitors targeting the catalytically active proteasome subunits. In this review, we summarize the proteindegradation mechanism of the 20S proteasome complex and compareit with the 26S proteasome complex. Afterwards, the localization of the 20S proteasome is summarized as well as its use as a diagnosticandprognostic marker. The FDA-approved proteasome inhibitors (PIs) under clinical trials are summarized and their current limited use in solid tumors is also reviewed in addition to the expression of theß5 subunit in differentcell lines. The review discusses in-silico analysis of the active subunit of the 20S proteasome complex. For development of new proteasome inhibitor drugs, the natural products inhibiting the 20S proteasome are summarized, as well as novel methodologies and challenges for the natural product discovery and current information about the biosynthetic gene clusters encoding them. We herein briefly summarize some resistancemechanismsto the proteasomeinhibitors. Additionally, we focus on the three main classes of proteasome inhibitors: 1] boronic acid, 2] beta-lactone and 3] epoxide inhibitor classes, as well as other PI classes, and their IC50 values and their structure-activity relationship (SAR). Lastly,we summarize several future prospects of developing new proteasome inhibitors towards the treatment of tumors, especially solid tumors.


Assuntos
Produtos Biológicos , Neoplasias , Medicamentos Sintéticos , Humanos , Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Medicamentos Sintéticos/farmacologia
4.
J Enzyme Inhib Med Chem ; 37(1): 2644-2659, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36146940

RESUMO

Nineteen new quinazolin-4(3H)-one derivatives 3a-g and 6a-l were designed and synthesised to inhibit EGFR. The antiproliferative activity of the synthesised compounds was tested in vitro against 60 different human cell lines. The most potent compound 6d displayed superior sub-micromolar antiproliferative activity towards NSC lung cancer cell line NCI-H460 with GI50 = 0.789 µM. It also showed potent cytostatic activity against 40 different cancer cell lines (TGI range: 2.59-9.55 µM). Compound 6d potently inhibited EGFR with IC50 = 0.069 ± 0.004 µM in comparison to erlotinib with IC50 value of 0.045 ± 0.003 µM. Compound 6d showed 16.74-fold increase in total apoptosis and caused cell cycle arrest at G1/S phase in breast cancer HS 578T cell line. Moreover, the most potent derivatives were docked into the EGFR active site to determine their binding mode and confirm their ability to satisfy the pharmacophoric features required for EGFR inhibition.


Assuntos
Antineoplásicos , Citostáticos , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Citostáticos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases , Quinazolinonas , Relação Estrutura-Atividade
5.
Bioorg Chem ; 118: 105487, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798455

RESUMO

Two series of pyrazoline compounds were designed and synthesized as antiproliferative agents by VEGFR pathway inhibition. All synthesized compounds were screened by the National Cancer Institute (NCI), Bethesda, USA for anticancer activity against 60 human cancer cell lines. Compound 3f exhibited the highest anticancer activity on the ovarian cell line (OVCAR-4) with IC50 = 0.29 µM and on the breast cell line (MDA-MB-468) with IC50 = 0.35 µM. It also exhibited the highest selectivity index (SI = 74). Compound 3f caused cell cycle arrest in OVCAR-4 cell line at the S phase which consequently inhibited cell proliferation and induced apoptosis. Moreover, 3f showed potent down-regulation of VEGF and p-VEGFR-2. Docking studies showed that compound 3f interacts in a similar pattern to axitinib on the VEGFR-2 receptor. The same compound was also able to fit into the gorge of STAT3 binding site, the transcription factor for VEGF, which explains the VEGF down-regulation.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Desenho de Fármacos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Bioorg Chem ; 107: 104630, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33476864

RESUMO

Exaggerated inflammatory responses may cause serious and debilitating diseases such as acute lung injury and rheumatoid arthritis. Two series of chalcone derivatives were prepared as anti-inflammatory agents. Methoxylated phenyl-based chalcones 2a-l and coumarin-based chalcones 3a-f were synthesized and compared for their inhibition of COX-2 enzyme and nitric oxide production suppression. Methoxylated phenyl-based chalcones showed better inhibition to COX-2 enzyme and nitric oxide suppression than the coumarin-based chalcones. Among the 18 synthesized chalcone derivatives, compound 2f exhibited the highest anti-inflammatory activity by inhibition of nitric oxide concentration in LPS-induced RAW264.7 macrophages (IC50 = 11.2 µM). The tested compound 2f showed suppression of iNOS and COX-2 enzymes. Moreover, compound 2f decreases in the expression of NF-κB and phosphorylated IκB in LPS-stimulated macrophages. Finally, docking studies suggested the inhibition of IKKß as a mechanism of action and highlighted the importance of 2f hydrophobic interactions.


Assuntos
Anti-Inflamatórios/farmacologia , Chalconas/química , Cumarínicos/química , Regulação para Baixo/efeitos dos fármacos , Desenho de Fármacos , Óxido Nítrico/metabolismo , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/metabolismo , Sítios de Ligação , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Chalconas/metabolismo , Chalconas/farmacologia , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
7.
Arch Pharm (Weinheim) ; 350(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28150327

RESUMO

A series of new pyridine derivatives 4a-c, 5a-d, 6a-d, 7a-f, and 8a-f structurally related to ABT-751 were synthesized and characterized by spectroscopic means and elemental analysis. All the synthesized compounds were tested for their cytotoxic activity in vitro against the HCT-116 and HepG-2 cancer cell lines using the MTT assay. The results showed that compound 8d has higher cytotoxic activity than the reference antimitotic agent colchicine, against both tested cell lines, with IC50 = 0.52 and 1.40 µM, respectively. The three most active compounds, 5d, 8b, and 8d, were further screened in vitro for inhibition of tubulin and showed remarkable results in comparison to colchicine.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Polimerização/efeitos dos fármacos , Piridinas/síntese química , Piridinas/farmacologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Colchicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...