Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(27): eabj5633, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857479

RESUMO

Pharmacodynamic (PD) studies are an essential component of preclinical drug discovery. Current approaches for PD studies, including the analysis of novel kidney disease targeting therapeutic agents, are limited to animal models with unclear translatability to the human condition. To address this challenge, we developed a novel approach for PD studies using transplanted, perfused human kidney organoids. We performed pharmacokinetic (PK) studies with GFB-887, an investigational new drug now in phase 2 trials. Orally dosed GFB-887 to athymic rats that had undergone organoid transplantation resulted in measurable drug exposure in transplanted organoids. We established the efficacy of orally dosed GFB-887 in PD studies, where quantitative analysis showed significant protection of kidney filter cells in human organoids and endogenous rat host kidneys. This widely applicable approach demonstrates feasibility of using transplanted human organoids in preclinical PD studies with an investigational new drug, empowering organoids to revolutionize drug discovery.


Assuntos
Nefropatias , Organoides , Animais , Descoberta de Drogas , Drogas em Investigação , Humanos , Rim , Ratos
2.
Front Med (Lausanne) ; 8: 721865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621762

RESUMO

Podocyte injury and the appearance of proteinuria are key features of several progressive kidney diseases. Genetic deletion or selective inhibition of TRPC5 channels with small-molecule inhibitors protects podocytes in rodent models of kidney disease, but less is known about the human relevance and translatability of TRPC5 inhibition. Here, we investigate the effect of TRPC5 inhibition in puromycin aminonucleoside (PAN)-treated rats, human iPSC-derived podocytes, and kidney organoids. We first established that systemic administration of the TRPC5 inhibitor AC1903 was sufficient to protect podocyte cytoskeletal proteins and suppress proteinuria in PAN-induced nephrosis rats, an established model of podocyte injury. TRPC5 current was recorded in the human iPSC-derived podocytes and was blocked by AC1903. PAN treatment caused podocyte injury in human iPSC-derived podocytes and kidney organoids. Inhibition of TRPC5 channels reversed the effects of PAN-induced injury in human podocytes in both 2D and 3D culture systems. Taken together, these results revealed the relevance of TRPC5 channel inhibition in puromycin-aminonucleoside induced nephrosis models, highlighting the potential of this therapeutic strategy for patients.

3.
Cell Rep Med ; 1(8): 100137, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33294858

RESUMO

Drug repurposing has the advantage of identifying potential treatments on a shortened timescale. In response to the pandemic spread of SARS-CoV-2, we took advantage of a high-content screen of 3,713 compounds at different stages of clinical development to identify FDA-approved compounds that reduce mucin-1 (MUC1) protein abundance. Elevated MUC1 levels predict the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) and correlate with poor clinical outcomes. Our screen identifies fostamatinib (R788), an inhibitor of spleen tyrosine kinase (SYK) approved for the treatment of chronic immune thrombocytopenia, as a repurposing candidate for the treatment of ALI. In vivo, fostamatinib reduces MUC1 abundance in lung epithelial cells in a mouse model of ALI. In vitro, SYK inhibition by the active metabolite R406 promotes MUC1 removal from the cell surface. Our work suggests fostamatinib as a repurposing drug candidate for ALI.

4.
bioRxiv ; 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637960

RESUMO

Drug repurposing is the only method capable of delivering treatments on the shortened time-scale required for patients afflicted with lung disease arising from SARS-CoV-2 infection. Mucin-1 (MUC1), a membrane-bound molecule expressed on the apical surfaces of most mucosal epithelial cells, is a biochemical marker whose elevated levels predict the development of acute lung injury (ALI) and respiratory distress syndrome (ARDS), and correlate with poor clinical outcomes. In response to the pandemic spread of SARS-CoV-2, we took advantage of a high content screen of 3,713 compounds at different stages of clinical development to identify FDA-approved compounds that reduce MUC1 protein abundance. Our screen identified Fostamatinib (R788), an inhibitor of spleen tyrosine kinase (SYK) approved for the treatment of chronic immune thrombocytopenia, as a repurposing candidate for the treatment of ALI. In vivo , Fostamatinib reduced MUC1 abundance in lung epithelial cells in a mouse model of ALI. In vitro , SYK inhibition by Fostamatinib promoted MUC1 removal from the cell surface. Our work reveals Fostamatinib as a repurposing drug candidate for ALI and provides the rationale for rapidly standing up clinical trials to test Fostamatinib efficacy in patients with COVID-19 lung injury.

5.
Nat Commun ; 10(1): 5462, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784515

RESUMO

Human iPSC-derived kidney organoids have the potential to revolutionize discovery, but assessing their consistency and reproducibility across iPSC lines, and reducing the generation of off-target cells remain an open challenge. Here, we profile four human iPSC lines for a total of 450,118 single cells to show how organoid composition and development are comparable to human fetal and adult kidneys. Although cell classes are largely reproducible across time points, protocols, and replicates, we detect variability in cell proportions between different iPSC lines, largely due to off-target cells. To address this, we analyze organoids transplanted under the mouse kidney capsule and find diminished off-target cells. Our work shows how single cell RNA-seq (scRNA-seq) can score organoids for reproducibility, faithfulness and quality, that kidney organoids derived from different iPSC lines are comparable surrogates for human kidney, and that transplantation enhances their formation by diminishing off-target cells.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Rim/citologia , Organoides/citologia , Animais , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Rim/metabolismo , Transplante de Rim , Camundongos , Organoides/metabolismo , Organoides/transplante , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Análise de Célula Única , Transplante Heterólogo
6.
Cell ; 178(3): 521-535.e23, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348885

RESUMO

Intracellular accumulation of misfolded proteins causes toxic proteinopathies, diseases without targeted therapies. Mucin 1 kidney disease (MKD) results from a frameshift mutation in the MUC1 gene (MUC1-fs). Here, we show that MKD is a toxic proteinopathy. Intracellular MUC1-fs accumulation activated the ATF6 unfolded protein response (UPR) branch. We identified BRD4780, a small molecule that clears MUC1-fs from patient cells, from kidneys of knockin mice and from patient kidney organoids. MUC1-fs is trapped in TMED9 cargo receptor-containing vesicles of the early secretory pathway. BRD4780 binds TMED9, releases MUC1-fs, and re-routes it for lysosomal degradation, an effect phenocopied by TMED9 deletion. Our findings reveal BRD4780 as a promising lead for the treatment of MKD and other toxic proteinopathies. Generally, we elucidate a novel mechanism for the entrapment of misfolded proteins by cargo receptors and a strategy for their release and anterograde trafficking to the lysosome.


Assuntos
Benzamidas/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Heptanos/farmacologia , Lisossomos/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Animais , Benzamidas/química , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/uso terapêutico , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Mutação da Fase de Leitura , Heptanos/uso terapêutico , Humanos , Receptores de Imidazolinas/antagonistas & inibidores , Receptores de Imidazolinas/genética , Receptores de Imidazolinas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/citologia , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mucina-1/química , Mucina-1/genética , Mucina-1/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas de Transporte Vesicular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...