Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(8): 114510, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018246

RESUMO

Ubiquitination is an essential regulator of cell division. The kinase Polo-like kinase 1 (PLK1) promotes protein degradation at G2/M phase through the E3 ubiquitin ligase Skp1-Cul1-F box (SCF)ßTrCP. However, the magnitude to which PLK1 shapes the mitotic proteome is uncharacterized. Combining quantitative proteomics with pharmacologic PLK1 inhibition revealed a widespread, PLK1-dependent program of protein breakdown at G2/M. We validated many PLK1-regulated proteins, including substrates of the cell-cycle E3 SCFCyclin F, demonstrating that PLK1 promotes proteolysis through at least two distinct E3 ligases. We show that the protein-kinase-A-anchoring protein A-kinase anchor protein 2 (AKAP2) is cell-cycle regulated and that its mitotic degradation is dependent on the PLK1/ßTrCP signaling axis. Expression of a non-degradable AKAP2 mutant resulted in actin defects and aberrant mitotic spindles, suggesting that AKAP2 degradation coordinates cytoskeletal organization during mitosis. These findings uncover PLK1's far-reaching role in shaping the mitotic proteome post-translationally and have potential implications in malignancies where PLK1 is upregulated.

2.
Cell Mol Immunol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937625

RESUMO

CD28 and 4-1BB costimulatory endodomains included in chimeric antigen receptor (CAR) molecules play a critical role in promoting sustained antitumor activity of CAR-T cells. However, the molecular events associated with the ectopic and constitutive display of either CD28 or 4-1BB in CAR-T cells have been only partially explored. In the current study, we demonstrated that 4-1BB incorporated within the CAR leads to cell cluster formation and cell death in the forms of both apoptosis and necroptosis in the absence of CAR tonic signaling. Mechanistic studies illustrate that 4-1BB sequesters A20 to the cell membrane in a TRAF-dependent manner causing A20 functional deficiency that in turn leads to NF-κB hyperactivity, cell aggregation via ICAM-1 overexpression, and cell death including necroptosis via RIPK1/RIPK3/MLKL pathway. Genetic modulations obtained by either overexpressing A20 or releasing A20 from 4-1BB by deleting the TRAF-binding motifs of 4-1BB rescue cell cluster formation and cell death and enhance the antitumor ability of 4-1BB-costimulated CAR-T cells.

3.
bioRxiv ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38853827

RESUMO

The ubiquitin-like protein ISG15 (interferon-stimulated gene 15) regulates the host response to bacterial and viral infections through its conjugation to proteins (ISGylation) following interferon production. ISGylation is antagonized by the highly specific cysteine protease USP18, which is the major deISGylating enzyme. However, mechanisms underlying USP18's extraordinary specificity towards ISG15 remains elusive. Here, we show that USP18 interacts with its paralog USP41, whose catalytic domain shares 97% identity with USP18. However, USP41 does not act as a deISGylase, which led us to perform a comparative analysis to decipher the basis for this difference, revealing molecular determinants of USP18's specificity towards ISG15. We found that USP18 C-terminus, as well as a conserved Leucine at position 198, are essential for its enzymatic activity and likely act as functional surfaces based on AlphaFold predictions. Finally, we propose that USP41 antagonizes conjugation of the understudied ubiquitin-like protein FAT10 (HLA-F adjacent transcript 10) from substrates in a catalytic-independent manner. Altogether, our results offer new insights into USP18's specificity towards ISG15, while identifying USP41 as a negative regulator of FAT10 conjugation.

5.
Nat Commun ; 15(1): 2485, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509117

RESUMO

Proteasome subunit hRpn13 is partially proteolyzed in certain cancer cell types to generate hRpn13Pru by degradation of its UCHL5/Uch37-binding DEUBAD domain and retention of an intact proteasome- and ubiquitin-binding Pru domain. By using structure-guided virtual screening, we identify an hRpn13 binder (XL44) and solve its structure ligated to hRpn13 Pru by integrated X-ray crystallography and NMR to reveal its targeting mechanism. Surprisingly, hRpn13Pru is depleted in myeloma cells following treatment with XL44. TMT-MS experiments reveal a select group of off-targets, including PCNA clamp-associated factor PCLAF and ribonucleoside-diphosphate reductase subunit M2 (RRM2), that are similarly depleted by XL44 treatment. XL44 induces hRpn13-dependent apoptosis and also restricts cell viability by a PCLAF-dependent mechanism. A KEN box, but not ubiquitination, is required for XL44-induced depletion of PCLAF. Here, we show that XL44 induces ubiquitin-dependent loss of hRpn13Pru and ubiquitin-independent loss of select KEN box containing proteins.


Assuntos
Glicoproteínas de Membrana , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Ubiquitina/metabolismo , Citoplasma/metabolismo , Fatores de Transcrição
6.
Biochem Soc Trans ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38414432

RESUMO

Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.

7.
bioRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873169

RESUMO

Targeted protein degradation by the ubiquitin-proteasome system is an essential mechanism regulating cellular division. The kinase PLK1 coordinates protein degradation at the G2/M phase of the cell cycle by promoting the binding of substrates to the E3 ubiquitin ligase SCFßTrCP. However, the magnitude to which PLK1 shapes the mitotic proteome has not been characterized. Combining deep, quantitative proteomics with pharmacologic PLK1 inhibition (PLK1i), we identified more than 200 proteins whose abundances were increased by PLK1i at G2/M. We validate many new PLK1-regulated proteins, including several substrates of the cell cycle E3 SCFCyclin F, demonstrating that PLK1 promotes proteolysis through at least two distinct SCF-family E3 ligases. Further, we found that the protein kinase A anchoring protein AKAP2 is cell cycle regulated and that its mitotic degradation is dependent on the PLK1/ßTrCP-signaling axis. Interactome analysis revealed that the strongest interactors of AKAP2 function in signaling networks regulating proliferation, including MAPK, AKT, and Hippo. Altogether, our data demonstrate that PLK1 coordinates a widespread program of protein breakdown at G2/M. We propose that dynamic proteolytic changes mediated by PLK1 integrate proliferative signals with the core cell cycle machinery during cell division. This has potential implications in malignancies where PLK1 is aberrantly regulated.

8.
Nat Struct Mol Biol ; 30(11): 1663-1674, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735619

RESUMO

Substrate polyubiquitination drives a myriad of cellular processes, including the cell cycle, apoptosis and immune responses. Polyubiquitination is highly dynamic, and obtaining mechanistic insight has thus far required artificially trapped structures to stabilize specific steps along the enzymatic process. So far, how any ubiquitin ligase builds a proteasomal degradation signal, which is canonically regarded as four or more ubiquitins, remains unclear. Here we present time-resolved cryogenic electron microscopy studies of the 1.2 MDa E3 ubiquitin ligase, known as the anaphase-promoting complex/cyclosome (APC/C), and its E2 co-enzymes (UBE2C/UBCH10 and UBE2S) during substrate polyubiquitination. Using cryoDRGN (Deep Reconstructing Generative Networks), a neural network-based approach, we reconstruct the conformational changes undergone by the human APC/C during polyubiquitination, directly visualize an active E3-E2 pair modifying its substrate, and identify unexpected interactions between multiple ubiquitins with parts of the APC/C machinery, including its coactivator CDH1. Together, we demonstrate how modification of substrates with nascent ubiquitin chains helps to potentiate processive substrate polyubiquitination, allowing us to model how a ubiquitin ligase builds a proteasomal degradation signal.


Assuntos
Anáfase , Ubiquitina , Humanos , Ciclossomo-Complexo Promotor de Anáfase/química , Microscopia Crioeletrônica , Ubiquitinação , Ubiquitina/metabolismo , Proteínas de Ciclo Celular/metabolismo
9.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569750

RESUMO

Ovarian cancer is the deadliest gynecological malignancy of the reproductive organs in the United States. Cyclin-dependent kinase 1 (CDK1) is an important cell cycle regulatory protein that specifically controls the G2/M phase transition of the cell cycle. RO-3306 is a selective, ATP-competitive, and cell-permeable CDK1 inhibitor that shows potent anti-tumor activity in multiple pre-clinical models. In this study, we investigated the effect of CDK1 expression on the prognosis of patients with ovarian cancer and the anti-tumorigenic effect of RO-3306 in both ovarian cancer cell lines and a genetically engineered mouse model of high-grade serous ovarian cancer (KpB model). In 147 patients with epithelial ovarian cancer, the overexpression of CDK1 was significantly associated with poor prognosis compared with a low expression group. RO-3306 significantly inhibited cellular proliferation, induced apoptosis, caused cellular stress, and reduced cell migration. The treatment of KpB mice with RO-3306 for four weeks showed a significant decrease in tumor weight under obese and lean conditions without obvious side effects. Overall, our results demonstrate that the inhibition of CDK1 activity by RO-3306 effectively reduces cell proliferation and tumor growth, providing biological evidence for future clinical trials of CDK1 inhibitors in ovarian cancer.


Assuntos
Proteína Quinase CDC2 , Neoplasias Ovarianas , Humanos , Feminino , Camundongos , Animais , Camundongos Transgênicos , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proliferação de Células , Carcinogênese
10.
J Am Chem Soc ; 145(3): 1512-1517, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630539

RESUMO

mRNA display is revolutionizing peptide drug discovery through its ability to quickly identify potent peptide binders of therapeutic protein targets. Methods to expand the chemical diversity of display libraries are continually needed to increase the likelihood of identifying clinically relevant peptide ligands. Orthogonal aminoacyl-tRNA synthetases (ORSs) have proven utility in cellular genetic code expansion, but are relatively underexplored for in vitro translation (IVT) and mRNA display. Herein, we demonstrate that the promiscuous ORS p-CNF-RS can incorporate noncanonical amino acids at amber codons in IVT, including the novel substrate p-cyanopyridylalanine (p-CNpyrA), to enable a pyridine-thiazoline (pyr-thn) macrocyclization in mRNA display. Pyr-thn-based selections against the deubiquitinase USP15 yielded a potent macrocyclic binder that exhibits good selectivity for USP15 and close homologues over other ubiquitin-specific proteases (USPs). Overall, this work exemplifies how promiscuous ORSs can both expand side chain diversity and provide structural novelty in mRNA display libraries through a heterocycle forming macrocyclization.


Assuntos
Aminoacil-tRNA Sintetases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Código Genético , Aminoácidos/química , Peptídeos/genética , RNA de Transferência/metabolismo
11.
Cancers (Basel) ; 15(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672466

RESUMO

Protein deubiquitinases play critical pathophysiological roles in cancer. Among all deubiquitinases, an oncogenic function for OTUD7B has been established in genetic NSCLC murine models. However, few deubiquitinase inhibitors have been developed due to technical challenges. Here, we report a putative small molecule OTUD7B inhibitor obtained from an AI-aided screen of a 4 million compound library. We validated the effects of the OTUD7B inhibitor (7Bi) in reducing Akt-pS473 signals in multiple NSCLC and HEK293 cells by blocking OTUD7B-governed GßL deubiquitination in cells, as well as inhibiting OTUD7B-mediated cleavage of K11-linked di-ub in an in vitro enzyme assay. Furthermore, we report in leukemia cells, either genetic depletion or 7Bi-mediated pharmacological inhibition of OTUD7B reduces Akt-pS473 via inhibiting the OTUD7B/GßL signaling axis. Together, our study identifies the first putative OTUD7B inhibitor showing activities both in cells and in vitro, with promising applications as a therapeutic agent in treating cancer with OTUD7B overexpression.

12.
Protein Sci ; 31(6): e4324, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35634770

RESUMO

Proper protein destruction by the ubiquitin (Ub)-proteasome system is vital for a faithful cell cycle. Hence, the activity of Ub ligases is tightly controlled. The Anaphase-Promoting Complex/Cyclosome (APC/C) is a 1.2 MDa Ub ligase responsible for mitotic progression and G1 maintenance. At the G1/S transition, the APC/C is inhibited by EMI1 to prevent APC/C-dependent polyubiquitination of cell cycle effectors. EMI1 uses several interaction motifs to block the recruitment of APC/C substrates as well as the APC/C-associated E2s, UBE2C, and UBE2S. Paradoxically, EMI1 is also an APC/C substrate during G1. Using a comprehensive set of enzyme assays, we determined the context-dependent involvement of the EMI1 motifs in APC/C-dependent ubiquitination of EMI1 and other substrates. Furthermore, we demonstrated that an isolated C-terminal peptide fragment of EMI1 activates APC/C-dependent substrate priming by UBE2C. Together, these findings reveal the multiple roles of the EMI1 C-terminus for G1 maintenance and the G1/S transition.


Assuntos
Proteínas F-Box , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Interfase/fisiologia , Ubiquitina/metabolismo
13.
EMBO J ; 41(3): e108823, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942047

RESUMO

Polyubiquitination by E2 and E3 enzymes is crucial to cell cycle control, epigenetic regulation, and development. The hallmark of the E2 family is the ubiquitin (Ub)-conjugating (UBC) domain that forms a dynamic thioester conjugate with ubiquitin (E2~Ub). Numerous studies have focused on E2 surfaces, such as the N-terminal and crossover helices, that directly interact with an E3 or the conjugated ubiquitin to stabilize the active, "closed" state of the E2~Ub. However, it remains unclear how other E2 surfaces regulate ubiquitin transfer. Here, we demonstrate the helix-turn-helix (HTH) motif of the UBC tunes the intrinsic polyubiquitination activity through distinct functions in different E2s. Interestingly, the E2HTH motif is repurposed in UBE2S and UBE2R2 to interact with the conjugated or acceptor ubiquitin, respectively, modulating ubiquitin transfer. Furthermore, we propose that Anaphase-Promoting Complex/Cyclosome binding to the UBE2SHTH reduces the conformational space of the flexible E2~Ub, demonstrating an atypical E3-dependent activation mechanism. Altogether, we postulate the E2HTH motif evolved to provide new functionalities that can be harnessed by E3s and permits additional regulation to facilitate specific E2-E3-mediated polyubiquitination.


Assuntos
Enzimas de Conjugação de Ubiquitina/química , Motivos de Aminoácidos , Domínio Catalítico , Humanos , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
14.
Elife ; 102021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851822

RESUMO

Cell cycle gene expression programs fuel proliferation and are universally dysregulated in cancer. The retinoblastoma (RB)-family of proteins, RB1, RBL1/p107, and RBL2/p130, coordinately represses cell cycle gene expression, inhibiting proliferation, and suppressing tumorigenesis. Phosphorylation of RB-family proteins by cyclin-dependent kinases is firmly established. Like phosphorylation, ubiquitination is essential to cell cycle control, and numerous proliferative regulators, tumor suppressors, and oncoproteins are ubiquitinated. However, little is known about the role of ubiquitin signaling in controlling RB-family proteins. A systems genetics analysis of CRISPR/Cas9 screens suggested the potential regulation of the RB-network by cyclin F, a substrate recognition receptor for the SCF family of E3 ligases. We demonstrate that RBL2/p130 is a direct substrate of SCFcyclin F. We map a cyclin F regulatory site to a flexible linker in the p130 pocket domain, and show that this site mediates binding, stability, and ubiquitination. Expression of a mutant version of p130, which cannot be ubiquitinated, severely impaired proliferative capacity and cell cycle progression. Consistently, we observed reduced expression of cell cycle gene transcripts, as well a reduced abundance of cell cycle proteins, analyzed by quantitative, iterative immunofluorescent imaging. These data suggest a key role for SCFcyclin F in the CDK-RB network and raise the possibility that aberrant p130 degradation could dysregulate the cell cycle in human cancers.


Assuntos
Ciclinas/genética , Proteína p130 Retinoblastoma-Like/genética , Retinoblastoma/genética , Fator de Células-Tronco/genética , Ciclinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Proteína p130 Retinoblastoma-Like/metabolismo , Fator de Células-Tronco/metabolismo
15.
Methods Mol Biol ; 2329: 143-164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085221

RESUMO

A balanced progression through mitosis and cell division is largely dependent on orderly phosphorylation and ubiquitin-mediated proteolysis of regulatory and structural proteins. These series of events ultimately secure genome stability and time-invariant cellular properties during cell proliferation. Two of the core enzymes regulating mitotic milestones in all eukaryotes are cyclin dependent kinase 1 (CDK1) with its coactivator cyclin B, and the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). Discovering mechanisms and substrates for these enzymes is vital to understanding how cells move through mitosis and segregate chromosomes with high fidelity. However, the study of these enzymes has significant challenges. Purely in vitro studies discount the contributions of yet to be described regulators and misses the physiological context of cellular environment. In vivo studies are complicated by the fact that each of these enzymes, as well as many of their regulators and downstream targets, are essential. Moreover, long-term in vivo manipulations can result in cascading, indirect effects that can distort data analysis and interpretation. Many of these challenges can be circumvented using cell-free systems, which have historically played a critical role in identifying these enzymes and their contributions under quasicellular environments. Here, we describe the preparation of a newly developed human cell-free system that recapitulates an anaphase-like state of human cells. This new toolkit complements traditional cell-free systems from human cells and frog eggs and can be easily implemented in cell biology labs for direct and quantitative studies of mitotic signaling regulated by phosphorylation, APC/C-mediated proteolysis, and beyond.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteína Quinase CDC2/metabolismo , Sistema Livre de Células/metabolismo , Ciclina B1/metabolismo , Anáfase , Ciclina B1/genética , Células HEK293 , Humanos , Mitose , Mutação , Fosforilação , Proteólise , Ubiquitinação
16.
Front Cell Dev Biol ; 9: 687515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109183

RESUMO

The ubiquitin (Ub)-proteasome system is vital to nearly every biological process in eukaryotes. Specifically, the conjugation of Ub to target proteins by Ub ligases, such as the Anaphase-Promoting Complex/Cyclosome (APC/C), is paramount for cell cycle transitions as it leads to the irreversible destruction of cell cycle regulators by the proteasome. Through this activity, the RING Ub ligase APC/C governs mitosis, G1, and numerous aspects of neurobiology. Pioneering cryo-EM, biochemical reconstitution, and cell-based studies have illuminated many aspects of the conformational dynamics of this large, multi-subunit complex and the sophisticated regulation of APC/C function. More recent studies have revealed new mechanisms that selectively dictate APC/C activity and explore additional pathways that are controlled by APC/C-mediated ubiquitination, including an intimate relationship with chromatin regulation. These tasks go beyond the traditional cell cycle role historically ascribed to the APC/C. Here, we review these novel findings, examine the mechanistic implications of APC/C regulation, and discuss the role of the APC/C in previously unappreciated signaling pathways.

17.
Mol Cell Biol ; 41(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33168699

RESUMO

The ubiquitin-proteasome system is essential for cell cycle progression. Cyclin F is a cell cycle-regulated substrate adapter F-box protein for the Skp1, CUL1, and F-box protein (SCF) family of E3 ubiquitin ligases. Despite its importance in cell cycle progression, identifying cyclin F-bound SCF complex (SCFCyclin F) substrates has remained challenging. Since cyclin F overexpression rescues a yeast mutant in the cdc4 gene, we considered the possibility that other genes that genetically modify cdc4 mutant lethality could also encode cyclin F substrates. We identified the mitochondrial and cytosolic deacylating enzyme sirtuin 5 (SIRT5) as a novel cyclin F substrate. SIRT5 has been implicated in metabolic processes, but its connection to the cell cycle is not known. We show that cyclin F interacts with and controls the ubiquitination, abundance, and stability of SIRT5. We show SIRT5 knockout results in a diminished G1 population and a subsequent increase in both S and G2/M. Global proteomic analyses reveal cyclin-dependent kinase (CDK) signaling changes congruent with the cell cycle changes in SIRT5 knockout cells. Together, these data demonstrate that SIRT5 is regulated by cyclin F and suggest a connection between SIRT5, cell cycle regulation, and metabolism.


Assuntos
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Proteínas F-Box/genética , Regulação Fúngica da Expressão Gênica , Processamento de Proteína Pós-Traducional , Proteínas Ligases SKP Culina F-Box/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sirtuínas/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Perfilação da Expressão Gênica , Genes Letais , Células HEK293 , Células HeLa , Humanos , Mutação , Proteínas Ligases SKP Culina F-Box/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sirtuínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
18.
PLoS Biol ; 18(12): e3000975, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33306668

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cromatina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/fisiologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/genética , Simulação por Computador , Células HEK293 , Células HeLa , Humanos , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
19.
Trends Cell Biol ; 30(8): 640-652, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513610

RESUMO

The E2F family of transcriptional regulators sits at the center of cell cycle gene expression and plays vital roles in normal and cancer cell cycles. Whereas control of E2Fs by the retinoblastoma family of proteins is well established, much less is known about their regulation by ubiquitin pathways. Recent studies placed the Skp1-Cul1-F-box-protein (SCF) family of E3 ubiquitin ligases with the F-box protein Cyclin F at the center of E2F regulation, demonstrating temporal proteolysis of both activator and atypical repressor E2Fs. Importantly, these E2F members, in particular activator E2F1 and repressors E2F7 and E2F8, form a feedback circuit at the crossroads of cell cycle and cell death. Moreover, Cyclin F functions in a reciprocal circuit with the cell cycle E3 ligase anaphase-promoting complex/cyclosome (APC/C), which also controls E2F7 and E2F8. This review focuses on the complex contours of feedback within this circuit, highlighting the deep crosstalk between E2F, SCF-Cyclin F, and APC/C in regulating the oscillator underlying human cell cycles.


Assuntos
Ciclinas/metabolismo , Fatores de Transcrição E2F/metabolismo , Ubiquitina/metabolismo , Animais , Ciclo Celular/genética , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Humanos , Proteólise
20.
ACS Chem Biol ; 15(8): 2164-2174, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32589399

RESUMO

Thiopeptide antibiotics are emerging clinical candidates that exhibit potent antibacterial activity against a variety of intracellular pathogens, including Mycobacterium tuberculosis (Mtb). Many thiopeptides directly inhibit bacterial growth by disrupting protein synthesis. However, recent work has shown that one thiopeptide, thiostrepton (TSR), can also induce autophagy in infected macrophages, which has the potential to be exploited for host-directed therapies against intracellular pathogens, such as Mtb. To better define the therapeutic potential of this class of antibiotics, we studied the host-directed effects of a suite of natural thiopeptides that spans five structurally diverse thiopeptide classes, as well as several analogs. We discovered that thiopeptides as a class induce selective autophagic removal of mitochondria, known as mitophagy. This activity is independent of other biological activities, such as proteasome inhibition or antibiotic activity. We also find that many thiopeptides exhibit potent activity against intracellular Mtb in macrophage infection models. However, the thiopeptide-induced mitophagy occurs outside of pathogen-containing autophagosomes and does not appear to contribute to thiopeptide control of intracellular Mtb. These results expand basic understanding of thiopeptide biology and provide key guidance for the development of new thiopeptide antibiotics and host-directed therapeutics.


Assuntos
Mitofagia/efeitos dos fármacos , Peptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Compostos de Sulfidrila/química , Animais , Antibacterianos/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteína Forkhead Box M1/metabolismo , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos/química , Fosforilação , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...