Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(16): eadf4049, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083532

RESUMO

An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies. Here, we present a textile electronic system with functional one-dimensional devices, including fiber photodetectors (as an input device), fiber supercapacitors (as an energy storage device), fiber field-effect transistors (as an electronic driving device), and fiber quantum dot light-emitting diodes (as an output device). As a proof of concept applicable to smart homes, a textile electronic system composed of multiple functional fiber components is demonstrated, enabling luminance modulation and letter indication depending on sunlight intensity.

2.
Nat Commun ; 13(1): 814, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145096

RESUMO

Smart textiles consist of discrete devices fabricated from-or incorporated onto-fibres. Despite the tremendous progress in smart textiles for lighting/display applications, a large scale approach for a smart display system with integrated multifunctional devices in traditional textile platforms has yet to be demonstrated. Here we report the realisation of a fully operational 46-inch smart textile lighting/display system consisting of RGB fibrous LEDs coupled with multifunctional fibre devices that are capable of wireless power transmission, touch sensing, photodetection, environmental/biosignal monitoring, and energy storage. The smart textile display system exhibits full freedom of form factors, including flexibility, bendability, and rollability as a vivid RGB lighting/grey-level-controlled full colour display apparatus with embedded fibre devices that are configured to provide external stimuli detection. Our systematic design and integration strategies are transformational and provide the foundation for realising highly functional smart lighting/display textiles over large area for revolutionary applications on smart homes and internet of things (IoT).

3.
Int J Sports Physiol Perform ; 7(4): 375-81, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22868209

RESUMO

PURPOSE: The main aim of this study was to compare the freely chosen cadence (FCC) and the cadence at which the blood lactate concentration at constant power output is minimized (optimal cadence [Copt]). The second aim was to examine the effect of a concomitant change of road incline and body position on FCC, the maximal external power output (Pmax), and the corresponding Copt. METHODS: FCC, Copt, and Pmax were analyzed under 2 conditions: cycling on level ground in a dropped position (LGDP) and cycling uphill in an upright position (UHUP). Seven experienced cyclists participated in this study. They cycled on a treadmill to test the 2 main hypotheses: Experienced cyclists would choose an adequate cadence close to Copt independent of the cycling condition, and FCC and Copt would be lower and Pmax higher for UHUP than with LGDP. RESULTS: Most but not all experienced cyclists chose an adequate cadence close to Copt. Independent of the cycling condition, FCC and Copt were not statistically different. FCC (82.1 ± 11.1 and 89.3 ± 10.6 rpm, respectively) and Copt (81.5 ± 9.8 and 87.7 ± 10.9 rpm, respectively) were significantly lower and Pmax was significantly higher (2.0 ± 2.1%) for UHUP than for LGDP. CONCLUSION: Most experienced cyclists choose a cadence near Copt to minimize peripheral fatigue at a given power output independent of the cycling condition. Furthermore, it is advantageous to use a lower cadence and a more upright body position during uphill cycling.


Assuntos
Ciclismo , Comportamento de Escolha , Contração Muscular , Força Muscular , Músculo Esquelético/fisiologia , Resistência Física , Postura , Adulto , Biomarcadores/sangue , Teste de Esforço , Humanos , Ácido Láctico/sangue , Masculino , Fadiga Muscular , Músculo Esquelético/metabolismo , Fatores de Tempo
4.
Eur J Appl Physiol ; 112(1): 365-75, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21573778

RESUMO

In maximal sprint cycling, the power-cadence relationship to assess the maximal power output (P (max)) and the corresponding optimal cadence (C (opt)) has been widely investigated in experimental studies. These studies have generally reported a quadratic power-cadence relationship passing through the origin. The aim of the present study was to evaluate an equivalent method to assess P (max) and C (opt) for endurance cycling. The two main hypotheses were: (1) in the range of cadences normally used by cyclists, the power-cadence relationship can be well fitted with a quadratic regression constrained to pass through the origin; (2) P (max) and C (opt) can be well estimated using this quadratic fit. We tested our hypothesis using a theoretical and an experimental approach. The power-cadence relationship simulated with the theoretical model was well fitted with a quadratic regression and the bias of the estimated P (max) and C (opt) was negligible (1.0 W and 0.6 rpm). In the experimental part, eight cyclists performed an incremental cycling test at 70, 80, 90, 100, and 110 rpm to yield power-cadence relationships at fixed blood lactate concentrations of 3, 3.5, and 4 mmol L(-1). The determined power outputs were well fitted with quadratic regressions (R (2) = 0.94-0.96, residual standard deviation = 1.7%). The 95% confidence interval for assessing individual P (max) and C (opt) was ±4.4 W and ±2.9 rpm. These theoretical and experimental results suggest that P (max), C (opt), and the power-cadence relationship around C (opt) could be well estimated with the proposed method.


Assuntos
Relógios Biológicos/fisiologia , Metabolismo Energético/fisiologia , Perna (Membro)/fisiologia , Modelos Biológicos , Resistência Física/fisiologia , Esforço Físico/fisiologia , Adulto , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Masculino
5.
Eur J Appl Physiol ; 112(7): 2433-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22045414

RESUMO

In race cycling, the external power-cadence relationship at the performance level, that is sustainable for the given race distance, plays a key role. The two variables of interest from this relationship are the maximal external power output (P (max)) and the corresponding optimal cadence (C (opt)). Experimental studies and field observations of cyclists have revealed that when cycling uphill is compared to cycling on level ground, the freely chosen cadence is lower and a more upright body position seems to be advantageous. To date, no study has addressed whether P (max) or C (opt) is influenced by road incline or body position. Thus, the main aim of this study was to examine the effect of road incline (0 vs. 7%) and racing position (upright posture vs. dropped posture) on P (max) and C (opt). Eighteen experienced cyclists participated in this study. Experiment I tested the hypothesis that road incline influenced P (max) and C (opt) at the second ventilatory threshold ([Formula: see text] and [Formula: see text]). Experiment II tested the hypothesis that the racing position influenced [Formula: see text], but not [Formula: see text]. The results of experiment I showed that [Formula: see text] and [Formula: see text] were significantly lower when cycling uphill compared to cycling on level ground (P < 0.01). Experiment II revealed that [Formula: see text] was significantly greater for the upright posture than for the dropped posture (P < 0.01) and that the racing position did not affect [Formula: see text]. The main conclusions of this study were that when cycling uphill, it is reasonable to choose (1) a lower cadence and (2) a more upright body position.


Assuntos
Ciclismo/fisiologia , Resistência Física/fisiologia , Esforço Físico/fisiologia , Postura/fisiologia , Análise e Desempenho de Tarefas , Adulto , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...