Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 75(3): 1389-93, 1978 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-274727

RESUMO

The localization of eukaryotic initiation factor 3(eIF-3) on native small ribosomal subunits has been established by electron microscopy through a comparison of native small ribosomal subunits with derived subunits and with native subunits stripped of eIF-3. Small subunits derived from reticulocyte ribosomes by the puromycin/KCl method are seen in electron micrographs as elongated particles, divided by a heavily stained partition into approximately one-third and two-third domains. Most particles (60-70%) observed in electron micrographs of native small subunit preparations resemble derived small subunits, but have an additional mass attached to one side, thus producing profiles with a three-lobed appearance. The mass measures approximately 160 x 100 x 60 A, and its particle weight is estimated to be about one-third to one-half that of a 40S subunit. The site of attachment of the additional mass is located on a prominence extending from the central part of the small subunit and is separated by a cleft from the smaller third of the subunit. The remaining particles in preparations of native subunits resemble the profiles seen in electron micrographs of derived subunits. After removal of eIF-3 by treatment with high concentrations of salt, profiles observed in electron micrographs of washed, native subunits were indistinguishable from those of derived subunits. Since removal of eIF-3 coincided with removal of a mass of the correct molecular weight, subunits with the three-lobed appearance are identified as native small subunits carrying eIF-3.


Assuntos
Fatores de Iniciação de Peptídeos , Ribossomos/metabolismo , Animais , Ligação Proteica , Coelhos , Reticulócitos/ultraestrutura , Ribossomos/ultraestrutura
2.
Biochem J ; 160(3): 495-503, 1976 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-1016236

RESUMO

The maturation of pre-rRNA (precursor to rRNA)in liver nuclei is studied by agar/ureagel electrophoresis, kinetics of labelling in vivo with [14C] orotate and electron-microscopic observation of secondary structure of RNA molecules. (1) Processing starts from primary pre-rRNA molecules with average mol. wt. 4.6X10(6)(45S) containing the segments of both 28S and 18S rRNA. These molecules form a heterogeneous peak on electrophoresis. The 28S rRNA segment is homogeneous in its secondary structure. However, the large transcribed spacer segment (presumably at the 5'-end) is heterogeneous in size and secondary structure. A minor early labelled RNA component with mol.wt. about 5.8X10(6) is reproducibly found, but its role as a pre-rRNA species remains to be determined. (2) The following intermediate pre-rRNA species are identified: 3.25X10(6) mol.wt.(41S), a precursor common to both mature rRNA species ; 2.60X10(6)(36S) and 2.15X10(6)(32S) precursors to 28S rRNA; 1.05X10(6) (21S) precursor to 18S rRNA. The pre-rRNA molecules in rat liver are identical in size and secondary structure with those observed in other mammalian cells. These results suggest that the endonuclease-cleavage sites along the pre-rRNA chain are identical in all mammalian cells. (3) Labelling kinetics and the simultaneous existence of both 36S and 21S pre-rRNA reveal that processing of primary pre-rRNA in adult rat liver occurs simultaneously by at least two major pathways: (i) 45S leads to 41S leads to 32S+21S leads to 28S+18S rRNA and (ii) 45S leads to 41S leads to 36S+18S leads to 32S leads to 28S rRNA. The two pathways differ by the temporal sequence of endonuclease attack along the 41 S pre-rRNA chain. A minor fraction (mol.wt.2.9X10(6), 39S) is identified as most likely originating by a direct split of 28S rRNA from 45S pre-rRNA. These results show that in liver considerable flexibility exists in the order of cleavage of pre-rRNA molecules during processing.


Assuntos
Núcleo Celular/metabolismo , Fígado/metabolismo , RNA Ribossômico/biossíntese , Animais , Eletroforese em Gel de Ágar , Cinética , Masculino , Microscopia Eletrônica , Peso Molecular , Conformação de Ácido Nucleico , Ratos
4.
J Microsc ; 96(1): 115-23, 1972 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-4679451
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...