Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15155, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956414

RESUMO

The accurate estimation of gas viscosity remains a pivotal concern for petroleum engineers, exerting substantial influence on the modeling efficacy of natural gas operations. Due to their time-consuming and costly nature, experimental measurements of gas viscosity are challenging. Data-based machine learning (ML) techniques afford a resourceful and less exhausting substitution, aiding research and industry at gas modeling that is incredible to reach in the laboratory. Statistical approaches were used to analyze the experimental data before applying machine learning. Seven machine learning techniques specifically Linear Regression, random forest (RF), decision trees, gradient boosting, K-nearest neighbors, Nu support vector regression (NuSVR), and artificial neural network (ANN) were applied for the prediction of methane (CH4), nitrogen (N2), and natural gas mixture viscosities. More than 4304 datasets from real experimental data utilizing pressure, temperature, and gas density were employed for developing ML models. Furthermore, three novel correlations have developed for the viscosity of CH4, N2, and composite gas using ANN. Results revealed that models and anticipated correlations predicted methane, nitrogen, and natural gas mixture viscosities with high precision. Results designated that the ANN, RF, and gradient Boosting models have performed better with a coefficient of determination (R2) of 0.99 for testing data sets of methane, nitrogen, and natural gas mixture viscosities. However, linear regression and NuSVR have performed poorly with a coefficient of determination (R2) of 0.07 and - 0.01 respectively for testing data sets of nitrogen viscosity. Such machine learning models offer the industry and research a cost-effective and fast tool for accurately approximating the viscosities of methane, nitrogen, and gas mixture under normal and harsh conditions.

2.
ACS Omega ; 7(4): 3549-3556, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128262

RESUMO

Water saturation assessment is recognized as one of the most critical aspects of formation evaluation, reserve estimation, and prediction of the production performance of any hydrocarbon reservoir. Water saturation measurement in a core laboratory is a time-consuming and expensive task. Many scientists have attempted to estimate water saturation accurately using well-logging data, which provides a continuous record without information loss. As a result, numerous models have been developed to relate reservoir characteristics with water saturation. By expanding the use and advancement of soft computing approaches in engineering challenges, petroleum engineers applied them to estimate the petrophysical parameters of the reservoir. In this paper, two techniques are developed to estimate the water saturation in terms of porosity, permeability, and formation resistivity index through the use of 383 data sets obtained from carbonate core samples. These techniques are the nonlinear multiple regression (NLMR) technique and the artificial neural network (ANN) technique. The proposed ANN model achieved outstanding performance and better accuracy for calculating the water saturation than the empirical correlation using NLMR and Archie equation with a high coefficient of determination (R 2) of 0.99, a low average relative error of 1.92, a low average absolute relative error of 13.62, and a low root mean square error of 0.066. To the best of our knowledge, the current research establishes a novel foundation using the ANN model in the estimation of water saturation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...