Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Syst Biol ; 72(3): 723-737, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713492

RESUMO

Common molecular phylogenetic characteristics such as long branches and compositional heterogeneity can be problematic for phylogenetic reconstruction when using amino acid data. Recoding alignments to reduced alphabets before phylogenetic analysis has often been used both to explore and potentially decrease the effect of such problems. We tested the effectiveness of this strategy on topological accuracy using simulated data on four-taxon trees. We simulated alignments in phylogenetically challenging ways to test the phylogenetic accuracy of analyses using various recoding strategies together with commonly used homogeneous models. We tested three recoding methods based on amino acid exchangeability, and another recoding method based on lowering the compositional heterogeneity among alignment sequences as measured by the Chi-squared statistic. Our simulation results show that on trees with long branches where sequences approach saturation, accuracy was not greatly affected by exchangeability-based recodings, but Chi-squared-based recoding decreased accuracy. We then simulated sequences with different kinds of compositional heterogeneity over the tree. Recoding often increased accuracy on such alignments. Exchangeability-based recoding was rarely worse than not recoding, and often considerably better. Recoding based on lowering the Chi-squared value improved accuracy in some cases but not in others, suggesting that low compositional heterogeneity by itself is not sufficient to increase accuracy in the analysis of these alignments. We also simulated alignments using site-specific amino acid profiles, making sequences that had compositional heterogeneity over alignment sites. Exchangeability-based recoding coupled with site-homogeneous models had poor accuracy for these data sets but Chi-squared-based recoding on these alignments increased accuracy. We then simulated data sets that were compositionally both site- and tree-heterogeneous, like many real data sets. The effect on the accuracy of recoding such doubly problematic data sets varied widely, depending on the type of compositional tree heterogeneity and on the recoding scheme. Interestingly, analysis of unrecoded compositionally heterogeneous alignments with the NDCH or CAT models was generally more accurate than homogeneous analysis, whether recoded or not. Overall, our results suggest that making trees for recoded amino acid data sets can be useful, but they need to be interpreted cautiously as part of a more comprehensive analysis. The use of better-fitting models like NDCH and CAT, which directly account for the patterns in the data, may offer a more promising long-term solution for analyzing empirical data. [Compositional heterogeneity; models of evolution; phylogenetic methods; recoding amino acid data sets.].


Assuntos
Aminoácidos , Filogenia , Simulação por Computador
2.
PLoS Pathog ; 18(12): e1011024, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36538568

RESUMO

Mitosomes are highly reduced forms of mitochondria which have lost two of the 'defining' features of the canonical organelle, the mitochondrial genome, and the capacity to generate energy in the form of ATP. Mitosomes are found in anaerobic protists and obligate parasites and, in most of the studied organisms, have a conserved function in the biosynthesis of iron-sulfur clusters (ISC) that are indispensable cofactors of many essential proteins. The genomes of some mitosome-bearing human pathogenic Microsporidia encode homologues of an alternative oxidase (AOX). This mitochondrial terminal respiratory oxidase is absent from the human host, and hence is a potential target for the development of new antimicrobial agents. Here we present experimental evidence for the mitosomal localization of AOX in the microsporidian Trachipleistophora hominis and demonstrate that it has an important role during the parasite's life cycle progression. Using a recently published methodology for synchronising T. hominis infection of mammalian cell lines, we demonstrated specific inhibition of T. hominis early meront growth and replication by an AOX inhibitor colletochlorin B. Treatment of T. hominis-infected host cells with the drug also inhibited re-infection by newly formed dispersive spores. Addition of the drug during the later stages of the parasite life cycle, when our methods suggest that AOX is not actively produced and T. hominis mitosomes are mainly active in Fe/S cluster biosynthesis, had no inhibitory effects on the parasites. Control experiments with the AOX-deficient microsporidian species Encephalitozoon cuniculi, further demonstrated the specificity of inhibition by the drug. Using the same methodology, we demonstrate effects of two clinically used anti-microsporidian drugs albendazole and fumagillin on the cell biology and life cycle progression of T. hominis infecting mammalian host cells. In summary, our results reveal that T. hominis mitosomes have an active role to play in the progression of the parasite life cycle as well as an important role in the biosynthesis of essential Fe/S clusters. Our work also demonstrates that T. hominis is a useful model for testing the efficacy of therapeutic agents and for studying the physiology and cell biology of microsporidian parasites growing inside infected mammalian cells.


Assuntos
Proteínas Fúngicas , Oxirredutases , Animais , Humanos , Proteínas Fúngicas/metabolismo , Oxirredutases/genética , Estágios do Ciclo de Vida , Mamíferos
3.
4.
Genome Biol Evol ; 13(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33772552

RESUMO

There is an expectation that analyses of molecular sequences might be able to distinguish between alternative hypotheses for ancient relationships, but the phylogenetic methods used and types of data analyzed are of critical importance in any attempt to recover historical signal. Here, we discuss some common issues that can influence the topology of trees obtained when using overly simple models to analyze molecular data that often display complicated patterns of sequence heterogeneity. To illustrate our discussion, we have used three examples of inferred relationships which have changed radically as models and methods of analysis have improved. In two of these examples, the sister-group relationship between thermophilic Thermus and mesophilic Deinococcus, and the position of long-branch Microsporidia among eukaryotes, we show that recovering what is now generally considered to be the correct tree is critically dependent on the fit between model and data. In the third example, the position of eukaryotes in the tree of life, the hypothesis that is currently supported by the best available methods is fundamentally different from the classical view of relationships between major cellular domains. Since heterogeneity appears to be pervasive and varied among all molecular sequence data, and even the best available models can still struggle to deal with some problems, the issues we discuss are generally relevant to phylogenetic analyses. It remains essential to maintain a critical attitude to all trees as hypotheses of relationship that may change with more data and better methods.


Assuntos
Evolução Biológica , Modelos Genéticos , Filogenia , Deinococcus/classificação , Microsporídios/classificação , Thermus/classificação
5.
Nat Ecol Evol ; 4(11): 1568, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33077932

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nat Ecol Evol ; 4(1): 138-147, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819234

RESUMO

Hypotheses about the origin of eukaryotic cells are classically framed within the context of a universal 'tree of life' based on conserved core genes. Vigorous ongoing debate about eukaryote origins is based on assertions that the topology of the tree of life depends on the taxa included and the choice and quality of genomic data analysed. Here we have reanalysed the evidence underpinning those claims and apply more data to the question by using supertree and coalescent methods to interrogate >3,000 gene families in archaea and eukaryotes. We find that eukaryotes consistently originate from within the archaea in a two-domains tree when due consideration is given to the fit between model and data. Our analyses support a close relationship between eukaryotes and Asgard archaea and identify the Heimdallarchaeota as the current best candidate for the closest archaeal relatives of the eukaryotic nuclear lineage.


Assuntos
Archaea , Eucariotos , Células Eucarióticas , Genômica , Filogenia
7.
Mol Biol Evol ; 37(2): 524-539, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647561

RESUMO

Hydrogenosomes are H2-producing mitochondrial homologs found in some anaerobic microbial eukaryotes that provide a rare intracellular niche for H2-utilizing endosymbiotic archaea. Among ciliates, anaerobic and aerobic lineages are interspersed, demonstrating that the switch to an anaerobic lifestyle with hydrogenosomes has occurred repeatedly and independently. To investigate the molecular details of this transition, we generated genomic and transcriptomic data sets from anaerobic ciliates representing three distinct lineages. Our data demonstrate that hydrogenosomes have evolved from ancestral mitochondria in each case and reveal different degrees of independent mitochondrial genome and proteome reductive evolution, including the first example of complete mitochondrial genome loss in ciliates. Intriguingly, the FeFe-hydrogenase used for generating H2 has a unique domain structure among eukaryotes and appears to have been present, potentially through a single lateral gene transfer from an unknown donor, in the common aerobic ancestor of all three lineages. The early acquisition and retention of FeFe-hydrogenase helps to explain the facility whereby mitochondrial function can be so radically modified within this diverse and ecologically important group of microbial eukaryotes.


Assuntos
Cilióforos/classificação , Perfilação da Expressão Gênica/métodos , Mitocôndrias/genética , Análise de Sequência de DNA/métodos , Aerobiose , Anaerobiose , Cilióforos/fisiologia , Evolução Molecular , Transferência Genética Horizontal , Genoma Mitocondrial , Hidrogênio/metabolismo , Filogenia , Análise de Sequência de RNA
8.
Elife ; 82019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31355745

RESUMO

Plasma membrane-located transport proteins are key adaptations for obligate intracellular Microsporidia parasites, because they can use them to steal host metabolites the parasites need to grow and replicate. However, despite their importance, the functions and substrate specificities of most Microsporidia transporters are unknown. Here, we provide functional data for a family of transporters conserved in all microsporidian genomes and also in the genomes of related endoparasites. The universal retention among otherwise highly reduced genomes indicates an important role for these transporters for intracellular parasites. Using Trachipleistophora hominis, a Microsporidia isolated from an HIV/AIDS patient, as our experimental model, we show that the proteins are ATP and GTP transporters located on the surface of parasites during their intracellular growth and replication. Our work identifies a new route for the acquisition of essential energy and nucleotides for a major group of intracellular parasites that infect most animal species including humans.


Assuntos
Trifosfato de Adenosina/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microsporídios/genética , Microsporídios/metabolismo , Animais , Linhagem Celular , Biologia Computacional , Sequência Conservada , Genoma Fúngico , Microsporídios/crescimento & desenvolvimento , Coelhos
9.
ISME J ; 12(11): 2655-2667, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29991760

RESUMO

Endosymbiosis is a widespread phenomenon in the microbial world and can be based on diverse interactions between endosymbiont and host cell. The vast majority of the known endosymbiotic interactions involve bacteria that have invaded eukaryotic host cells. However, methanogenic archaea have been found to thrive in anaerobic, hydrogenosome-containing protists and it was suggested that this symbiosis is based on the transfer of hydrogen. Here, we used culture-independent genomics approaches to sequence the genomes of two distantly related methanogenic endosymbionts that have been acquired in two independent events by closely related anaerobic ciliate hosts Nyctotherus ovalis and Metopus contortus, respectively. The sequences obtained were then validated as originating from the ciliate endosymbionts by in situ probing experiments. Comparative analyses of these genomes and their closest free-living counterparts reveal that the genomes of both endosymbionts are in an early stage of adaptation towards endosymbiosis as evidenced by the large number of genes undergoing pseudogenization. For instance, the observed loss of genes involved in amino acid biosynthesis in both endosymbiont genomes indicates that the endosymbionts rely on their hosts for obtaining several essential nutrients. Furthermore, the endosymbionts appear to have gained significant amounts of genes of potentially secreted proteins, providing targets for future studies aiming to elucidate possible mechanisms underpinning host-interactions. Altogether, our results provide the first genomic insights into prokaryotic endosymbioses from the archaeal domain of life.


Assuntos
Cilióforos/microbiologia , Euryarchaeota/genética , Genoma Arqueal , Simbiose/genética , Evolução Molecular , Genômica
10.
Front Microbiol ; 9: 140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515525

RESUMO

Many anaerobic ciliated protozoa contain organelles of mitochondrial ancestry called hydrogenosomes. These organelles generate molecular hydrogen that is consumed by methanogenic Archaea, living in endosymbiosis within many of these ciliates. Here we describe a new species of anaerobic ciliate, Trimyema finlayi n. sp., by using silver impregnation and microscopy to conduct a detailed morphometric analysis. Comparisons with previously published morphological data for this species, as well as the closely related species, Trimyema compressum, demonstrated that despite them being similar, both the mean cell size and the mean number of somatic kineties are lower for T. finlayi than for T. compressum, which suggests that they are distinct species. This was also supported by analysis of the 18S rRNA genes from these ciliates, the sequences of which are 97.5% identical (6 substitutions, 1479 compared bases), and in phylogenetic analyses these sequences grouped with other 18S rRNA genes sequenced from previous isolates of the same respective species. Together these data provide strong evidence that T. finlayi is a novel species of Trimyema, within the class Plagiopylea. Various microscopic techniques demonstrated that T. finlayi n. sp. contains polymorphic endosymbiotic methanogens, and analysis of the endosymbionts' 16S rRNA gene showed that they belong to the genus Methanocorpusculum, which was confirmed using fluorescence in situ hybridization with specific probes. Despite the degree of similarity and close relationship between these ciliates, T. compressum contains endosymbiotic methanogens from a different genus, Methanobrevibacter. In phylogenetic analyses of 16S rRNA genes, the Methanocorpusculum endosymbiont of T. finlayi n. sp. grouped with sequences from Methanomicrobia, including the endosymbiont of an earlier isolate of the same species, 'Trimyema sp.,' which was sampled approximately 22 years earlier, at a distant (∼400 km) geographical location. Identification of the same endosymbiont species in the two separate isolates of T. finlayi n. sp. provides evidence for spatial and temporal stability of the Methanocorpusculum-T. finlayi n. sp. endosymbiosis. T. finlayi n. sp. and T. compressum provide an example of two closely related anaerobic ciliates that have endosymbionts from different methanogen genera, suggesting that the endosymbionts have not co-speciated with their hosts.

11.
Mol Biol Evol ; 35(4): 984-1002, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149300

RESUMO

Most phylogenetic models assume that the evolutionary process is stationary and reversible. In addition to being biologically improbable, these assumptions also impair inference by generating models under which the likelihood does not depend on the position of the root. Consequently, the root of the tree cannot be inferred as part of the analysis. Yet identifying the root position is a key component of phylogenetic inference because it provides a point of reference for polarizing ancestor-descendant relationships and therefore interpreting the tree. In this paper, we investigate the effect of relaxing the unrealistic reversibility assumption and allowing the position of the root to be another unknown. We propose two hierarchical models that are centered on a reversible model but perturbed to allow nonreversibility. The models differ in the degree of structure imposed on the perturbations. The analysis is performed in the Bayesian framework using Markov chain Monte Carlo methods for which software is provided. We illustrate the performance of the two nonreversible models in analyses of simulated data using two types of topological priors. We then apply the models to a real biological data set, the radiation of polyploid yeasts, for which there is robust biological opinion about the root position. Finally, we apply the models to a second biological alignment for which the rooted tree is controversial: the ribosomal tree of life. We compare the two nonreversible models and conclude that both are useful in inferring the position of the root from real biological data.


Assuntos
Modelos Genéticos , Filogenia , Teorema de Bayes , Cadeias de Markov , Método de Monte Carlo , Ribossomos , Saccharomyces cerevisiae
12.
Cell Mol Life Sci ; 75(5): 921-938, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29058016

RESUMO

Amino acid transporters are essential components of prokaryote and eukaryote cells, possess distinct physiological functions, and differ markedly in substrate specificity. Amino acid transporters can be both drug targets and drug transporters (bioavailability, targeting) with many monogenic disorders resulting from dysfunctional membrane transport. The largest collection of amino acid transporters (including the mammalian SLC6, SLC7, SLC32, SLC36, and SLC38 families), across all kingdoms of life, is within the Amino acid-Polyamine-organoCation (APC) superfamily. The LeuT-fold is a paradigm structure for APC superfamily amino acid transporters and carriers of sugars, neurotransmitters, electrolytes, osmolytes, vitamins, micronutrients, signalling molecules, and organic and fatty acids. Each transporter is specific for a unique sub-set of solutes, specificity being determined by how well a substrate fits into each binding pocket. However, the molecular basis of substrate selectivity remains, by and large, elusive. Using an integrated computational and experimental approach, we demonstrate that a single position within the LeuT-fold can play a crucial role in determining substrate specificity in mammalian and arthropod amino acid transporters within the APC superfamily. Systematic mutation of the amino acid residue occupying the equivalent position to LeuT V104 titrates binding pocket space resulting in dramatic changes in substrate selectivity in exemplar APC amino acid transporters including PAT2 (SLC36A2) and SNAT5 (SLC38A5). Our work demonstrates how a single residue/site within an archetypal structural motif can alter substrate affinity and selectivity within this important superfamily of diverse membrane transporters.


Assuntos
Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Animais , Transporte Biológico , Domínio Catalítico/genética , Humanos , Modelos Moleculares , Família Multigênica , Mutagênese Sítio-Dirigida , Filogenia , Domínios e Motivos de Interação entre Proteínas/genética , Especificidade por Substrato/genética
13.
Proc Natl Acad Sci U S A ; 114(23): E4602-E4611, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533395

RESUMO

A root for the archaeal tree is essential for reconstructing the metabolism and ecology of early cells and for testing hypotheses that propose that the eukaryotic nuclear lineage originated from within the Archaea; however, published studies based on outgroup rooting disagree regarding the position of the archaeal root. Here we constructed a consensus unrooted archaeal topology using protein concatenation and a multigene supertree method based on 3,242 single gene trees, and then rooted this tree using a recently developed model of genome evolution. This model uses evidence from gene duplications, horizontal transfers, and gene losses contained in 31,236 archaeal gene families to identify the most likely root for the tree. Our analyses support the monophyly of DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea), a recently discovered cosmopolitan and genetically diverse lineage, and, in contrast to previous work, place the tree root between DPANN and all other Archaea. The sister group to DPANN comprises the Euryarchaeota and the TACK Archaea, including Lokiarchaeum, which our analyses suggest are monophyletic sister lineages. Metabolic reconstructions on the rooted tree suggest that early Archaea were anaerobes that may have had the ability to reduce CO2 to acetate via the Wood-Ljungdahl pathway. In contrast to proposals suggesting that genome reduction has been the predominant mode of archaeal evolution, our analyses infer a relatively small-genomed archaeal ancestor that subsequently increased in complexity via gene duplication and horizontal gene transfer.


Assuntos
Archaea/genética , Evolução Molecular , Genoma Arqueal , Modelos Genéticos , Algoritmos , Archaea/classificação , Archaea/metabolismo , Eucariotos/classificação , Eucariotos/genética , Duplicação Gênica , Transferência Genética Horizontal , Redes e Vias Metabólicas/genética , Família Multigênica , Filogenia , Temperatura
14.
Genome Biol Evol ; 9(2): 480-487, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28164241

RESUMO

Plasma membrane-located nucleotide transport proteins (NTTs) underpin the lifestyle of important obligate intracellular bacterial and eukaryotic pathogens by importing energy and nucleotides from infected host cells that the pathogens can no longer make for themselves. As such their presence is often seen as a hallmark of an intracellular lifestyle associated with reductive genome evolution and loss of primary biosynthetic pathways. Here, we investigate the phylogenetic distribution of NTT sequences across the domains of cellular life. Our analysis reveals an unexpectedly broad distribution of NTT genes in both host-associated and free-living prokaryotes and eukaryotes. We also identify cases of within-bacteria and bacteria-to-eukaryote horizontal NTT transfer, including into the base of the oomycetes, a major clade of parasitic eukaryotes. In addition to identifying sequences that retain the canonical NTT structure, we detected NTT gene fusions with HEAT-repeat and cyclic nucleotide binding domains in Cyanobacteria, pathogenic Chlamydiae and Oomycetes. Our results suggest that NTTs are versatile functional modules with a much wider distribution and a broader range of potential roles than has previously been appreciated.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular , Proteínas de Transporte de Nucleotídeos/genética , Filogenia , Chlamydia/classificação , Chlamydia/genética , Chlamydia/patogenicidade , Cianobactérias/classificação , Cianobactérias/genética , Oomicetos/classificação , Oomicetos/genética , Simbiose/genética
15.
Nat Commun ; 8: 13932, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28051091

RESUMO

Microsporidians are obligate intracellular parasites that have minimized their genome content and sub-cellular structures by reductive evolution. Here, we demonstrate that cristae-deficient mitochondria (mitosomes) of Trachipleistophora hominis are the functional site of iron-sulfur cluster (ISC) assembly, which we suggest is the essential task of these organelles. Cell fractionation, fluorescence imaging and immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe-2S] cluster biosynthesis that we biochemically reconstituted using purified mitosomal ISC proteins. The T. hominis cytosolic iron-sulfur protein assembly (CIA) pathway includes the essential Cfd1-Nbp35 scaffold complex that assembles a [4Fe-4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that the ISC and CIA pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides compelling evidence for the ancient chimeric ancestry of eukaryotes.


Assuntos
Evolução Biológica , Proteínas Fúngicas/biossíntese , Proteínas Ferro-Enxofre/biossíntese , Mitocôndrias/metabolismo , Pansporablastina/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas Fúngicas/genética , Proteínas Ferro-Enxofre/genética , Pansporablastina/genética , Filogenia
16.
PLoS Pathog ; 12(11): e1005870, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27855212

RESUMO

Microsporidia are strict obligate intracellular parasites that infect a wide range of eukaryotes including humans and economically important fish and insects. Surviving and flourishing inside another eukaryotic cell is a very specialised lifestyle that requires evolutionary innovation. Genome sequence analyses show that microsporidia have lost most of the genes needed for making primary metabolites, such as amino acids and nucleotides, and also that they have only a limited capacity for making adenosine triphosphate (ATP). Since microsporidia cannot grow and replicate without the enormous amounts of energy and nucleotide building blocks needed for protein, DNA, and RNA biosynthesis, they must have evolved ways of stealing these substrates from the infected host cell. Providing they can do this, genome analyses suggest that microsporidia have the enzyme repertoire needed to use and regenerate the imported nucleotides efficiently. Recent functional studies suggest that a critical innovation for adapting to intracellular life was the acquisition by lateral gene transfer of nucleotide transport (NTT) proteins that are now present in multiple copies in all microsporidian genomes. These proteins are expressed on the parasite surface and allow microsporidia to steal ATP and other purine nucleotides for energy and biosynthesis from their host. However, it remains unclear how other essential metabolites, such as pyrimidine nucleotides, are acquired. Transcriptomic and experimental studies suggest that microsporidia might manipulate host cell metabolism and cell biological processes to promote nucleotide synthesis and to maximise the potential for ATP and nucleotide import. In this review, we summarise recent genomic and functional data relating to how microsporidia exploit their hosts for energy and building blocks needed for growth and nucleic acid metabolism and we identify some remaining outstanding questions.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Microsporídios/metabolismo , Nucleotídeos/metabolismo , Animais , Humanos
17.
Proc Biol Sci ; 283(1830)2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170716

RESUMO

The remodelling of organelle function is increasingly appreciated as a central driver of eukaryotic biodiversity and evolution. Kinetoplastids including Trypanosoma and Leishmania have evolved specialized peroxisomes, called glycosomes. Glycosomes uniquely contain a glycolytic pathway as well as other enzymes, which underpin the physiological flexibility of these major human pathogens. The sister group of kinetoplastids are the diplonemids, which are among the most abundant eukaryotes in marine plankton. Here we demonstrate the compartmentalization of gluconeogenesis, or glycolysis in reverse, in the peroxisomes of the free-living marine diplonemid, Diplonema papillatum Our results suggest that peroxisome modification was already under way in the common ancestor of kinetoplastids and diplonemids, and raise the possibility that the central importance of gluconeogenesis to carbon metabolism in the heterotrophic free-living ancestor may have been an important selective driver. Our data indicate that peroxisome modification is not confined to the kinetoplastid lineage, but has also been a factor in the success of their free-living euglenozoan relatives.


Assuntos
Euglenozoários/citologia , Euglenozoários/metabolismo , Peroxissomos/metabolismo , Trypanosoma cruzi/citologia , Aminoácidos/metabolismo , Carbono/metabolismo , Enzimas/metabolismo , Euglenozoários/genética , Gluconeogênese , Microcorpos , Via de Pentose Fosfato , Filogenia , Transdução de Sinais , Trypanosoma cruzi/metabolismo
18.
Mol Biol Evol ; 33(8): 2002-15, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189558

RESUMO

The Microsporidia are a major group of intracellular fungi and important parasites of animals including insects, fish, and immunocompromised humans. Microsporidian genomes have undergone extreme reductive evolution but there are major differences in genome size and structure within the group: some are prokaryote-like in size and organisation (<3 Mb of gene-dense sequence) while others have more typically eukaryotic genome architectures. To gain fine-scale, population-level insight into the evolutionary dynamics of these tiny eukaryotic genomes, we performed the broadest microsporidian population genomic study to date, sequencing geographically isolated strains of Spraguea, a marine microsporidian infecting goosefish worldwide. Our analysis revealed that population structure across the Atlantic Ocean is associated with a conserved difference in ploidy, with American and Canadian isolates sharing an ancestral whole genome duplication that was followed by widespread pseudogenisation and sorting-out of paralogue pairs. While past analyses have suggested de novo gene formation of microsporidian-specific genes, we found evidence for the origin of new genes from noncoding sequence since the divergence of these populations. Some of these genes experience selective constraint, suggesting the evolution of new functions and local host adaptation. Combining our data with published microsporidian genomes, we show that nucleotide composition across the phylum is shaped by a mutational bias favoring A and T nucleotides, which is opposed by an evolutionary force favoring an increase in genomic GC content. This study reveals ongoing dramatic reorganization of genome structure and the evolution of new gene functions in modern microsporidians despite extensive genomic streamlining in their common ancestor.


Assuntos
Microsporídios/genética , Evolução Biológica , Biologia Computacional , Evolução Molecular , Duplicação Gênica , Variação Genética , Genoma Fúngico , Genômica/métodos , Metagenômica , Filogenia , Filogeografia
19.
BMC Genomics ; 16: 983, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26589282

RESUMO

BACKGROUND: Trachipleistophora hominis was isolated from an HIV/AIDS patient and is a member of a highly successful group of obligate intracellular parasites. METHODS: Here we have investigated the evolution of the parasite and the interplay between host and parasite gene expression using transcriptomics of T. hominis-infected rabbit kidney cells. RESULTS: T. hominis has about 30% more genes than small-genome microsporidians. Highly expressed genes include those involved in growth, replication, defence against oxidative stress, and a large fraction of uncharacterised genes. Chaperones are also highly expressed and may buffer the deleterious effects of the large number of non-synonymous mutations observed in essential T. hominis genes. Host expression suggests a general cellular shutdown upon infection, but ATP, amino sugar and nucleotide sugar production appear enhanced, potentially providing the parasite with substrates it cannot make itself. Expression divergence of duplicated genes, including transporters used to acquire host metabolites, demonstrates ongoing functional diversification during microsporidian evolution. We identified overlapping transcription at more than 100 loci in the sparse T. hominis genome, demonstrating that this feature is not caused by genome compaction. The detection of additional transposons of insect origin strongly suggests that the natural host for T. hominis is an insect. CONCLUSIONS: Our results reveal that the evolution of contemporary microsporidian genomes is highly dynamic and innovative. Moreover, highly expressed T. hominis genes of unknown function include a cohort that are shared among all microsporidians, indicating that some strongly conserved features of the biology of these enormously successful parasites remain uncharacterised.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Microsporídios/genética , Transcriptoma , Alelos , Animais , Linhagem Celular , Células Cultivadas , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Diploide , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Frequência do Gene , Transferência Genética Horizontal , Genes Fúngicos , Genoma Fúngico , Insetos/genética , Insetos/microbiologia , Estágios do Ciclo de Vida/genética , Microsporídios/crescimento & desenvolvimento , Microsporídios/metabolismo , Família Multigênica , Filogenia , Polimorfismo de Nucleotídeo Único , Splicing de RNA , Coelhos , Reprodutibilidade dos Testes , Transcrição Gênica
20.
Philos Trans R Soc Lond B Biol Sci ; 370(1678): 20140318, 2015 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-26323752

RESUMO

The origin of eukaryotic cells is one of the most fascinating challenges in biology, and has inspired decades of controversy and debate. Recent work has led to major upheavals in our understanding of eukaryotic origins and has catalysed new debates about the roles of endosymbiosis and gene flow across the tree of life. Improved methods of phylogenetic analysis support scenarios in which the host cell for the mitochondrial endosymbiont was a member of the Archaea, and new technologies for sampling the genomes of environmental prokaryotes have allowed investigators to home in on closer relatives of founding symbiotic partners. The inference and interpretation of phylogenetic trees from genomic data remains at the centre of many of these debates, and there is increasing recognition that trees built using inadequate methods can prove misleading, whether describing the relationship of eukaryotes to other cells or the root of the universal tree. New statistical approaches show promise for addressing these questions but they come with their own computational challenges. The papers in this theme issue discuss recent progress on the origin of eukaryotic cells and genomes, highlight some of the ongoing debates, and suggest possible routes to future progress.


Assuntos
Archaea/genética , Bactérias/genética , Evolução Biológica , Células Eucarióticas/citologia , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...