Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 8: 618898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33604334

RESUMO

Cytoskeletal structure and its regulation are essential for maintenance of the differentiated state of specific types of cells and their adaptation to physiologic and pathophysiologic conditions. Renal glomerular capillaries, composed of podocytes, endothelial cells, and the glomerular basement membrane, have distinct structural and biophysical properties and are the site of injury in many glomerular diseases. Calcineurin inhibitors, immunosuppressant drugs used for organ transplantation and auto-immune diseases, can protect podocytes and glomerular capillaries from injury by preserving podocyte cytoskeletal structure. These drugs cause complications including hypertension and hyperkalemia which are mediated by WNK (With No Lysine) kinases as well as vasculopathy with glomerulopathy. WNK kinases and their target kinases oxidative stress-responsive kinase 1 (OSR1) and SPS1-related proline/alanine-rich kinase (SPAK) have fundamental roles in angiogenesis and are activated by calcineurin inhibitors, but the actions of these agents on kidney vasculature, and glomerular capillaries are not fully understood. We investigated WNK1 expression in cultured podocytes and isolated mouse glomerular capillaries to determine if WNK1 contributes to calcineurin inhibitor-induced preservation of podocyte and glomerular structure. WNK1 and OSR1/SPAK are expressed in podocytes, and in a pattern similar to podocyte synaptopodin in glomerular capillaries. Calcineurin inhibitors increased active OSR1/SPAK in glomerular capillaries, the Young's modulus (E) of glomeruli, and the F/G actin ratio, effects all blocked by WNK inhibition. In glomeruli, WNK inhibition caused reduced and irregular synaptopodin-staining, abnormal capillary and foot process structures, and increased deformability. In cultured podocytes, FK506 activated OSR1/SPAK, increased lamellipodia, accelerated cell migration, and promoted traction force. These actions of FK506 were reduced by depletion of WNK1. Collectively, these results demonstrate the importance of WNK1 in regulation of the podocyte actin cytoskeleton, biophysical properties of glomerular capillaries, and slit diaphragm structure, all of which are essential to normal kidney function.

2.
J Am Soc Nephrol ; 29(5): 1501-1512, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29572404

RESUMO

Background FSGS is a pattern of podocyte injury that leads to loss of glomerular function. Podocytes support other podocytes and glomerular capillary structure, oppose hemodynamic forces, form the slit diaphragm, and have mechanical properties that permit these functions. However, the biophysical characteristics of glomeruli and podocytes in disease remain unclear.Methods Using microindentation, atomic force microscopy, immunofluorescence microscopy, quantitative RT-PCR, and a three-dimensional collagen gel contraction assay, we studied the biophysical and structural properties of glomeruli and podocytes in chronic (Tg26 mice [HIV protein expression]) and acute (protamine administration [cytoskeletal rearrangement]) models of podocyte injury.Results Compared with wild-type glomeruli, Tg26 glomeruli became progressively more deformable with disease progression, despite increased collagen content. Tg26 podocytes had disordered cytoskeletons, markedly abnormal focal adhesions, and weaker adhesion; they failed to respond to mechanical signals and exerted minimal traction force in three-dimensional collagen gels. Protamine treatment had similar but milder effects on glomeruli and podocytes.Conclusions Reduced structural integrity of Tg26 podocytes causes increased deformability of glomerular capillaries and limits the ability of capillaries to counter hemodynamic force, possibly leading to further podocyte injury. Loss of normal podocyte mechanical integrity could injure neighboring podocytes due to the absence of normal biophysical signals required for podocyte maintenance. The severe defects in podocyte mechanical behavior in the Tg26 model may explain why Tg26 glomeruli soften progressively, despite increased collagen deposition, and may be the basis for the rapid course of glomerular diseases associated with severe podocyte injury. In milder injury (protamine), similar processes occur but over a longer time.


Assuntos
Fenômenos Biofísicos , Citoesqueleto/fisiologia , Glomerulonefrite/fisiopatologia , Nefrose Lipoide/fisiopatologia , Podócitos/fisiologia , Animais , Adesão Celular , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Módulo de Elasticidade , Glomerulonefrite/genética , Glomerulonefrite/patologia , HIV/genética , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Microscopia de Fluorescência , Nefrose Lipoide/induzido quimicamente , Nefrose Lipoide/patologia , Paxilina/metabolismo , Podócitos/patologia , Protaminas , Reação em Cadeia da Polimerase em Tempo Real
3.
PLoS One ; 11(12): e0167924, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27942003

RESUMO

The elastic properties of renal glomeruli and their capillaries permit them to maintain structural integrity in the presence of variable hemodynamic forces. Measured by micro-indentation, glomeruli have an elastic modulus (E, Young's modulus) of 2.1 kPa, and estimates from glomerular perfusion studies suggest that the E of glomeruli is between 2 and 4 kPa. F-actin depolymerization by latrunculin, inhibition of acto-myosin contractility by blebbistatin, reduction in ATP synthesis, and reduction of the affinity of adhesion proteins by EDTA reduced the glomerular E to 1.26, 1.7, 1.5, and 1.43 kPa, respectively. Actin filament stabilization with jasplakinolide and increasing integrin affinity with Mg2+ increased E to 2.65 and 2.87 kPa, respectively. Alterations in glomerular E are reflected in commensurate changes in F/G actin ratios. Disruption of vimentin intermediate filaments by withaferin A reduced E to 0.92 kPa. The E of decellularized glomeruli was 0.74 kPa, indicating that cellular components of glomeruli have dominant effects on their elasticity. The E of glomerular basement membranes measured by magnetic bead displacement was 2.4 kPa. Podocytes and mesangial cells grown on substrates with E values between 3 and 5 kPa had actin fibers and focal adhesions resembling those of podocytes in vivo. Renal ischemia and ischemia-reperfusion reduced the E of glomeruli to 1.58 kPa. These results show that the E of glomeruli is between 2 and 4 kPa. E of the GBM, 2.4 kPa, is consistent with this value, and is supported by the behavior of podocytes and mesangial cells grown on variable stiffness matrices. The podocyte cytoskeleton contributes the major component to the overall E of glomeruli, and a normal E requires ATP synthesis. The reduction in glomerular E following ischemia and in other diseases indicates that reduced glomerular E is a common feature of many forms of glomerular injury and indicative of an abnormal podocyte cytoskeleton.


Assuntos
Citoesqueleto de Actina/metabolismo , Módulo de Elasticidade , Glomérulos Renais/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Integrinas/metabolismo , Glomérulos Renais/citologia , Células Mesangiais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Podócitos/metabolismo , Tiazolidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...