Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 14: 1-13, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36634212

RESUMO

Overexpression of CD74, a type II transmembrane glycoprotein involved in MHC class II antigen presentation, has been reported in many B-cell non-Hodgkin lymphomas (NHLs) and in multiple myeloma (MM). STRO-001 is a site-specific, predominantly single-species antibody-drug conjugate (ADC) that targets CD74 and has demonstrated efficacy in xenograft models of MM and tolerability in non-human primates. Here we report results of preclinical studies designed to elucidate the potential role of STRO-001 in B-cell NHL. STRO-001 displayed nanomolar and sub-nanomolar cytotoxicity in 88% (15/17) of cancer cell lines tested. STRO-001 showed potent cytotoxicity on proliferating B cells while limited cytotoxicity was observed on naïve human B cells. A linear dose-response relationship was demonstrated in vivo for DLBCL models SU-DHL-6 and U2932. Tumor regression was induced at doses less than 5 mg/kg, while maximal activity with complete cures were observed starting at 10 mg/kg. In MCL Mino and Jeko-1 xenografts, STRO-001 starting at 3 mg/kg significantly prolonged survival or induced tumor regression, respectively, leading to tumor eradication in both models. In summary, high CD74 expression levels in tumors, nanomolar cellular potency, and significant anti-tumor in DLBCL and MCL xenograft models support the ongoing clinical study of STRO-001 in patients with B-cell NHL.


Assuntos
Antineoplásicos , Imunoconjugados , Linfoma não Hodgkin , Mieloma Múltiplo , Animais , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mieloma Múltiplo/patologia , Linfoma não Hodgkin/tratamento farmacológico , Linhagem Celular Tumoral
2.
Oncotarget ; 9(102): 37700-37714, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30701025

RESUMO

STRO-001 is a site-specific, predominantly single-species, fully human, aglycosylated anti-CD74 antibody-drug conjugate incorporating a non-cleavable linker-maytansinoid warhead with a drug-antibody ratio of 2 which was produced by a novel cell-free antibody synthesis platform. We examined the potential pharmacodynamics and anti-tumor effects of STRO-001 in multiple myeloma (MM). CD74 expression was assessed in MM cell lines and primary bone marrow (BM) MM biopsies. CD74 mRNA was detectable in CD138+ enriched plasma cells from 100% (892/892) of patients with newly diagnosed MM. Immunohistochemistry confirmed CD74 expression in 35/36 BM biopsies from patients with newly diagnosed and relapsed/refractory MM. Cytotoxicity assays demonstrated nanomolar STRO-001 potency in 4/6 MM cell lines. In ARP-1 and MM.1S tumor-bearing mice, repeat STRO-001 dosing provided significant antitumor activity with eradication of malignant hCD138+ BM plasma cells and prolonged survival. In a luciferase-expressing MM.1S xenograft model, dose-dependent STRO-001 efficacy was confirmed using bioluminescent imaging and BM tumor burden quantification. Consistent with the intended pharmacodynamic effect, STRO-001 induced dose-responsive, reversible B-cell and monocyte depletion in cynomolgus monkeys, up to a maximum tolerated 10 mg/kg, with no evidence of off-target toxicity. Collectively, these data suggest that STRO-001 is a promising therapeutic agent for the treatment of MM.

3.
Nat Med ; 21(11): 1318-25, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26479923

RESUMO

Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.


Assuntos
Antineoplásicos/uso terapêutico , Ensaios de Triagem em Larga Escala/métodos , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias da Mama/tratamento farmacológico , Carcinoma/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , Camundongos , Transplante de Neoplasias , Neoplasias Pancreáticas/tratamento farmacológico , Reprodutibilidade dos Testes , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Gástricas/tratamento farmacológico
4.
Mol Cancer Ther ; 12(3): 295-305, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23270929

RESUMO

Numerous lines of evidence suggest that the polypeptide hormone prolactin (PRL) may contribute to breast and prostate tumorigenesis through its interactions with the prolactin receptor (PRLR). Here, we describe the biologic properties of LFA102, a humanized neutralizing monoclonal antibody directed against the extracellular domain of PRLR. This antibody was found to effectively antagonize PRL-induced signaling in breast cancer cells in vitro and in vivo and to block PRL-induced proliferation in numerous cell line models, including examples of autocrine/paracrine PRL activity. A single administration of LFA102 resulted in regression of PRL-dependent Nb2-11 tumor xenografts and significantly prolonged time to progression. Finally, LFA102 treatment significantly inhibited PRLR signaling as well as tumor growth in a carcinogen-induced, estrogen receptor-positive rat mammary cancer model as a monotherapy and enhanced the efficacy of the aromatase inhibitor letrozole when administered in combination. The biologic properties of LFA102, elucidated by the preclinical studies presented here, suggest that this antibody has the potential to be a first-in-class, effective therapeutic for the treatment of PRL-dependent cancers.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Receptores da Prolactina/imunologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Camundongos , Terapia de Alvo Molecular , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Prolactina/metabolismo , Ratos , Receptores da Prolactina/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Clin Cancer Res ; 13(2 Pt 1): 591-602, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17255282

RESUMO

PURPOSE: Chk1 kinase is a critical regulator of both S and G(2)-M phase cell cycle checkpoints in response to DNA damage. This study aimed to evaluate the biochemical, cellular, and antitumor effects of a novel Chk1 inhibitor, CHIR124. EXPERIMENTAL DESIGN: CHIR-124 was evaluated for its ability to abrogate cell cycle checkpoints, to potentiate cytotoxicity, and to inhibit Chk1-mediated signaling induced by topoisomerase I poisons in human tumor cell line and xenograft models. RESULTS: CHIR-124 is a quinolone-based small molecule that is structurally unrelated to other known inhibitors of Chk1. It potently and selectively inhibits Chk1 in vitro (IC(50) = 0.0003 micromol/L). CHIR-124 interacts synergistically with topoisomerase poisons (e.g., camptothecin or SN-38) in causing growth inhibition in several p53-mutant solid tumor cell lines as determined by isobologram or response surface analysis. CHIR-124 abrogates the SN-38-induced S and G(2)-M checkpoints and potentiates apoptosis in MDA-MD-435 breast cancer cells. The abrogation of the G(2)-M checkpoint and induction of apoptosis by CHIR-124 are enhanced by the loss of p53. We have also shown that CHIR-124 treatment can restore the level of cdc25A protein, which is normally targeted by Chk1 for degradation following DNA damage, indicating that Chk1 signaling is suppressed in the presence of CHIR-124. Finally, in an orthotopic breast cancer xenograft model, CHIR-124 potentiates the growth inhibitory effects of irinotecan by abrogating the G(2)-M checkpoint and increasing tumor apoptosis. CONCLUSIONS: CHIR-124 is a novel and potent Chk1 inhibitor with promising antitumor activities when used in combination with topoisomerase I poisons.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sinergismo Farmacológico , Proteínas Quinases/metabolismo , Quinolinas/administração & dosagem , Quinuclidinas/administração & dosagem , Inibidores da Topoisomerase I , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos SCID , Modelos Químicos , Transplante de Neoplasias , Distribuição Aleatória
6.
Clin Cancer Res ; 12(16): 4908-15, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16914579

RESUMO

PURPOSE: The ectopically expressed and deregulated fibroblast growth factor receptor 3 (FGFR3) results from a t(4;14) chromosomal translocation that occurs in approximately 15% of multiple myeloma (MM) patients and confers a particularly poor prognosis. This study assesses the antimyeloma activity of CHIR-258, a small-molecule inhibitor of multiple receptor tyrosine kinases that is currently in phase I trials, in a newly developed FGFR3-driven preclinical MM animal model. EXPERIMENTAL DESIGN: We developed an orthotopic MM model in mice using a luciferase-expressing human KMS-11-luc line that expresses mutant FGFR3 (Y373C). The antimyeloma activity of CHIR-258 was evaluated at doses that inhibited FGFR3 signaling in vivo in this FGFR3-driven animal model. RESULTS: Noninvasive bioluminescence imaging detected MM lesions in nearly all mice injected with KMS-11-luc cells, which were mainly localized in the spine, skull, and pelvis, resulting in frequent development of paralysis. Daily oral administration of CHIR-258 at doses that inhibited FGFR3 signaling in KMS-11-luc tumors in vivo resulted in a significant inhibition of KMS-11-luc tumor growth, which translated into a significant improvement in animal survival. CONCLUSIONS: Our data provide a relevant preclinical basis for clinical trials of CHIR-258 in FGFR3-positive MM patients.


Assuntos
Benzimidazóis/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Quinolonas/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mieloma Múltiplo/enzimologia , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/sangue , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...