Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Regen Med ; 19(3): 537-551, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35167044

RESUMO

BACKGROUND: We have designed a reinforced drug-loaded vascular graft composed of polycaprolactone (PCL) and polydioxanone (PDO) via a combination of electrospinning/3D printing approaches. To evaluate its potential for clinical application, we compared the in vivo blood compatibility and performance of PCL/PDO + 10%DY grafts doped with an antithrombotic drug (dipyridamole) with a commercial expanded polytetrafluoroethylene (e-PTFE) graft in a porcine model. METHODS: A total of 10 pigs (weight: 25-35 kg) were used in this study. We made a new 5-mm graft with PCL/PDO composite nanofiber via the electrospinning technique. We simultaneously implanted a commercially available e-PTFE graft (n = 5) and our PCL/PDO + 10%DY graft (n = 5) into the carotid arteries of the pigs. No anticoagulant/antiplatelet agent was administered during the follow-up period, and ultrasonography was performed weekly to confirm the patency of the two grafts in vivo. Four weeks later, we explanted and compared the performance of the two grafts by histological analysis and scanning electron microscopy (SEM). RESULTS: No complications, such as sweating on the graft or significant bleeding from the needle hole site, were seen in the PCL/PDO + 10%DY graft immediately after implantation. Serial ultrasonographic examination and immunohistochemical analysis demonstrated that PCL/PDO + 10%DY grafts showed normal physiological blood flow and minimal lumen reduction, and pulsed synchronously with the native artery at 4 weeks after implantation. However, all e-PTFE grafts occluded within the study period. The luminal surface of the PCL/PDO + 10%DY graft in the transitional zone was fully covered with endothelial cells as observed by SEM. CONCLUSION: The PCL/PDO + 10%DY graft was well tolerated, and no adverse tissue reaction was observed in porcine carotid models during the short-term follow-up. Colonization of the graft by host endothelial and smooth muscle cells coupled with substantial extracellular matrix production marked the regenerative capability. Thus, this material may be an ideal substitute for vascular reconstruction and bypass surgeries. Long-term observations will be necessary to determine the anti-thrombotic and remodeling potential of this device.


Assuntos
Nanofibras , Trombose , Animais , Prótese Vascular , Artérias Carótidas/patologia , Artérias Carótidas/cirurgia , Células Endoteliais , Politetrafluoretileno , Suínos , Trombose/patologia
2.
Nanomedicine ; 30: 102306, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32992018

RESUMO

The major challenge of commercially available vascular substitutes comes from their limitations in terms of hydrophobic surface, which is hostile to cell growth. To date, tissue-engineered and synthetic grafts have not translated well to clinical trials when looking at small diameters. We conceptualized a cell-free structurally reinforced biodegradable vascular graft recapitulating the anisotropic feature of a native blood vessel. The nanofibrous scaffold is designed in such a way that it will gradually degrade systematically to yield a neo-vessel, facilitated by an immobilized bioactive molecule-vascular endothelial growth factor (VEGF). The nano-topographic cue of the device is capable of direct host cell infiltration. We evaluated the burst pressure, histology, hemocompatibility, compression test, and mechanical analysis of the new graft. The graft implanted into the carotid artery of a porcine model demonstrated a good patency rate as early as two week post-implantation. This graft reinforced design approach when employed in vascular tissue engineering might strongly influencing regenerative medicine.


Assuntos
Prótese Vascular , Impressão Tridimensional , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Artérias Carótidas/cirurgia , Modelos Animais , Medicina Regenerativa , Suínos , Engenharia Tecidual
3.
Cardiovasc Eng Technol ; 11(5): 495-521, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32812139

RESUMO

BACKGROUND: Current design strategies for small diameter vascular grafts (< 6 mm internal diameter; ID) are focused on mimicking native vascular tissue because the commercially available grafts still fail at small diameters, notably due to development of intimal hyperplasia and thrombosis. To overcome these challenges, various design approaches, material selection, and surface modification strategies have been employed to improve the patency of small-diameter grafts. REVIEW: The purpose of this review is to outline various considerations in the development of small-diameter vascular grafts, including material choice, surface modifications to enhance biocompatibility/endothelialization, and mechanical properties of the graft, that are currently being implanted. Additionally, we have taken into account the general vascular physiology, tissue engineering approaches, and collective achievements of the authors in this area. We reviewed both commercially available synthetic grafts (e-PTFE and PET), elastic polymers such as polyurethane and biodegradable and bioresorbable materials. We included naturally occurring materials by focusing on their potential application in the development of future vascular alternatives. CONCLUSION: Until now, there are few comprehensive reviews regarding considerations in the design of small-diameter vascular grafts in the literature. Here-in, we have discussed in-depth the various strategies employed to generate engineered vascular graft due to their high demand for vascular surgeries. While some TEVG design strategies have shown greater potential in contrast to autologous or synthetic ePTFE conduits, many are still hindered by high production cost which prevents their widespread adoption. Nonetheless, as tissue engineers continue to develop on their strategies and procedures for improved TEVGs, soon, a reliable engineered graft will be available in the market. Hence, we anticipate a viable TEVG with resorbable property, fabricated via electrospinning approach to hold a greater potential that can overcome the challenges observed in both autologous and allogenic grafts. This is because they can be mechanically tuned, incorporated/surface-functionalized with bioactive molecules and mass-manufactured in a reproducible manner. It is also found that most of the success in engineered vascular graft approaching commercialization is for large vessels rather than small-diameter grafts used as cardiovascular bypass grafts. Consequently, the field of vascular engineering is still available for future innovators that can take up the challenge to create a functional arterial substitute.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Desenho de Prótese , Animais , Implante de Prótese Vascular/efeitos adversos , Oclusão de Enxerto Vascular/etiologia , Oclusão de Enxerto Vascular/fisiopatologia , Humanos , Propriedades de Superfície , Trombose/etiologia , Trombose/fisiopatologia , Grau de Desobstrução Vascular
4.
Int J Nanomedicine ; 13: 6375-6390, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410326

RESUMO

BACKGROUND: The objective of this study was to evaluate the efficacy of a combination of Photothermal therapy (PTT) and chemotherapy in a single nano-fiber platform containing lethal polydopamine nanopheres (PD NPs) for annihilation of CT 26 cancer cells. METHOD: Polydioxanone (PDO) nanofiber containing PD and bortezomib (BTZ) was fabricated via electrospinning method. The content of BTZ and PD after optimization was 7% and 2.5% respectively with respect to PDO weight. PD NPs have absorption band in near-infrared (NIR) with resultant rapid heating capable of inducing cancer cell death. The samples was divided into three groups - PDO, PDO+PD, and PDO+PD-BTZ for analysis. RESULTS: In combined treatment, PDO nanofiber alone could not inhibit cancer cell growth as it neither contain PD or BTZ. However, PDO+PD fiber showed a cell viability of approximately 20% after 72 hr of treatment indicating minimal killing via hyperthermia. In the case of PDO composite fiber containing BTZ, the effect of NIR irradiation reduced the viability of cancer cells down to around 5% after 72 h showing the efficiency of combination therapy on cancer cells elimination. However, due to higher photothermal conversion that may negatively affect normal cells above 46°C, we have employed 1 s "OFF" and 2 s "ON" after initial 9 s continuous irradiation to maintain the temperature between 42 and 46°C over 3 mins of treatment using 2 W/cm2; 808 nm laser which resulted to similar cell death. CONCLUSION: In this study, combination of PTT and chemotherapy treatment on CT 26 colon cancer cells within 3 min resulted in effective cell death in contrast to single treatment of either PTT and chemotherapy alone. Our results suggest that this nanofiber device with efficient heating and remote control drug delivery system can be useful and convenient in the future clinical application for localized cancer therapy.


Assuntos
Materiais Biocompatíveis/química , Hipertermia Induzida/métodos , Indóis/química , Raios Infravermelhos , Nanofibras/química , Nanosferas/química , Neoplasias/terapia , Fototerapia/métodos , Polímeros/química , Animais , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Varredura Diferencial de Calorimetria , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Terapia Combinada , Liberação Controlada de Fármacos , Humanos , Camundongos , Nanofibras/ultraestrutura , Neoplasias/patologia , Polidioxanona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...