Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802212

RESUMO

Targetable alterations in cancer offer novel opportunities to the drug discovery process. However, pre-clinical testing often requires solubilization of these drugs in cosolvents like dimethyl sulfoxide (DMSO). Using a panel of cell lines commonly used for in vitro drug screening and pre-clinical testing, we explored the DMSO off-target effects on functional signaling networks, drug targets, and downstream substrates. Eight Non-Small Cell Lung Cancer (NSCLC) cell lines were incubated with three concentrations of DMSO (0.0008%, 0.002%, and 0.004% v/v) over time. Expression and activation levels of 187 proteins, of which 137 were kinases and downstream substrates, were captured using the Reverse Phase Protein Array (RPPA). The DMSO effect was heterogeneous across cell lines and varied based on concentration, exposure time, and cell line. Of the 187 proteins measured, all were statistically different in at least one comparison at the highest DMSO concentration, followed by 99.5% and 98.9% at lower concentrations. Only 46% of the proteins were found to be statistically different in more than 5 cell lines, indicating heterogeneous response across models. These cell line specific alterations modulate response to in vitro drug screening. Ultra-low DMSO concentrations have broad and heterogeneous effects on targetable signaling proteins. Off-target effects need to be carefully evaluated in pre-clinical drug screening and testing.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Dimetil Sulfóxido/farmacologia , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/biossíntese , Transdução de Sinais/efeitos dos fármacos , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia
2.
Sci Rep ; 10(1): 2227, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042107

RESUMO

HIV-1 viral transcription persists in patients despite antiretroviral treatment, potentially due to intermittent HIV-1 LTR activation. While several mathematical models have been explored in the context of LTR-protein interactions, in this work for the first time HIV-1 LTR model featuring repressed, intermediate, and activated LTR states is integrated with generation of long (env) and short (TAR) RNAs and proteins (Tat, Pr55, and p24) in T-cells and macrophages using both cell lines and infected primary cells. This type of extended modeling framework allows us to compare and contrast behavior of these two cell types. We demonstrate that they exhibit unique LTR dynamics, which ultimately results in differences in the magnitude of viral products generated. One of the distinctive features of this work is that it relies on experimental data in reaction rate computations. Two RNA transcription rates from the activated promoter states are fit by comparison of experimental data to model predictions. Fitting to the data also provides estimates for the degradation/exit rates for long and short viral RNA. Our experimentally generated data is in reasonable agreement for the T-cell as well macrophage population and gives strong evidence in support of using the proposed integrated modeling paradigm. Sensitivity analysis performed using Latin hypercube sampling method confirms robustness of the model with respect to small parameter perturbations. Finally, incorporation of a transcription inhibitor (F07#13) into the governing equations demonstrates how the model can be used to assess drug efficacy. Collectively, our model indicates transcriptional differences between latently HIV-1 infected T-cells and macrophages and provides a novel platform to study various transcriptional dynamics leading to latency or activation in numerous cell types and physiological conditions.


Assuntos
Fármacos Anti-HIV/farmacologia , Regulação Viral da Expressão Gênica/imunologia , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Macrófagos/imunologia , Linfócitos T/imunologia , Fármacos Anti-HIV/uso terapêutico , Linhagem Celular , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Farmacorresistência Viral/imunologia , Infecções por HIV/sangue , Infecções por HIV/imunologia , Repetição Terminal Longa de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Humanos , Macrófagos/virologia , Modelos Genéticos , Modelos Imunológicos , Cultura Primária de Células , RNA Viral/genética , RNA Viral/metabolismo , Linfócitos T/virologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/imunologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Replicação Viral/imunologia
3.
BMC Res Notes ; 4: 168, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21619643

RESUMO

BACKGROUND: The "off-target" silencing effect hinders the development of siRNA-based therapeutic and research applications. Existing solutions for finding possible locations of siRNA seats within a large database of genes are either too slow, miss a portion of the targets, or are simply not designed to handle a very large number of queries. We propose a new approach that reduces the computational time as compared to existing techniques. FINDINGS: The proposed method employs tree-based storage in a form of a modified truncated suffix tree to sort all possible short string substrings within given set of strings (i.e. transcriptome). Using the new algorithm, we pre-computed a list of the best siRNA locations within each human gene ("siRNA seats"). siRNAs designed to reside within siRNA seats are less likely to hybridize off-target. These siRNA seats could be used as an input for the traditional "set-of-rules" type of siRNA designing software. The list of siRNA seats is available through a publicly available database located at http://web.cos.gmu.edu/~gmanyam/siRNA_db/search.php CONCLUSIONS: In attempt to perform top-down prediction of the human siRNA with minimized off-target hybridization, we developed an efficient algorithm that employs suffix tree based storage of the substrings. Applications of this approach are not limited to optimal siRNA design, but can also be useful for other tasks involving selection of the characteristic strings specific to individual genes. These strings could then be used as siRNA seats, as specific probes for gene expression studies by oligonucleotide-based microarrays, for the design of molecular beacon probes for Real-Time PCR and, generally, any type of PCR primers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...