Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(16): 4334-4341, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706925

RESUMO

Telescopes measuring cosmic microwave background (CMB) polarization on large angular scales require exquisite control of systematic errors to ensure the fidelity of the cosmological results. In particular, far-sidelobe contamination from wide angle scattering is a potentially prominent source of systematic error for large aperture microwave telescopes. Here we describe and demonstrate a ray-tracing-based modeling technique to predict far sidelobes for a three mirror anastigmat telescope designed to observe the CMB from the South Pole. Those sidelobes are produced by light scattered in the receiver optics subsequently interacting with the walls of the surrounding telescope enclosure. After comparing simulated sidelobe maps and angular power spectra for different enclosure wall treatments, we propose a highly scattering surface that would provide more than an order of magnitude reduction in the degree-scale far-sidelobe contrast compared to a typical reflective surface. We conclude by discussing the fabrication of a prototype scattering wall panel and presenting measurements of its angular scattering profile.

2.
Appl Opt ; 62(18): 4747-4752, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37707247

RESUMO

We have demonstrated the fabrication of a monolithic, 5 m diameter, aluminum reflector with 17.4 µm root-mean-square surface error. The reflector was designed to avoid the problem of pickup due to scattering from panel gaps in a large, millimeter-wavelength telescope that will be used for measurements of the cosmic microwave background.

3.
Materials (Basel) ; 16(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36902959

RESUMO

Biobased composites offer unique properties in the context of sustainable material production as well as end-of-life disposal, which places them as viable alternatives to fossil-fuel-based materials. However, the large-scale application of these materials in product design is hindered by their perceptual handicaps and understanding the mechanism of biobased composite perception, and its constituents could pave the way to creating commercially successful biobased composites. This study examines the role of bimodal (visual and tactile) sensory evaluation in the formation of biobased composite perception through the Semantic Differential method. It is observed that the biobased composites could be grouped into different clusters based on the dominance and interplay of various senses in perception forming. Attributes such as Natural, Beautiful, and Valuable are seen to correlate with each other positively and are influenced by both visual and tactile characteristics of the biobased composites. Attributes such as Complex, Interesting, and Unusual are also positively correlated but dominated by visual stimuli. The perceptual relationships and components of beauty, naturality, and value and their constituent attributes are identified, along with the visual and tactile characteristics that influence these assessments. Material design leveraging these biobased composite characteristics could lead to the creation of sustainable materials that would be more attractive to designers and consumers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...