Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979203

RESUMO

Our study elucidates functional roles for conserved cis-elements associated with the evolution of mammalian hibernation. Genomic analyses found topologically associated domains (TADs) that disproportionately accumulated convergent genomic changes in hibernators, including the TAD for the Fat Mass & Obesity (Fto) locus. Some hibernation-linked cis-elements in this TAD form regulatory contacts with multiple neighboring genes. Knockout mice for these cis-elements exhibit Fto, Irx3, and Irx5 gene expression changes, impacting hundreds of genes downstream. Profiles of pre-torpor, torpor, and post-torpor phenotypes found distinct roles for each cis-element in metabolic control, while a high caloric diet uncovered different obesogenic effects. One cis-element promoting a lean phenotype influences foraging behaviors throughout life, affecting specific behavioral sequences. Thus, convergent evolution in hibernators pinpoints functional genetic mechanisms of mammalian metabolic control.

2.
iScience ; 26(5): 106761, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37216088

RESUMO

Foraging in animals relies on innate decision-making heuristics that can result in suboptimal cognitive biases in some contexts. The mechanisms underlying these biases are not well understood, but likely involve strong genetic effects. To explore this, we studied fasted mice using a naturalistic foraging paradigm and discovered an innate cognitive bias called "second-guessing." This involves repeatedly investigating an empty former food patch instead of consuming available food, which hinders the mice from maximizing feeding benefits. The synaptic plasticity gene Arc is revealed to play a role in this bias, as Arc-deficient mice did not exhibit second-guessing and consumed more food. In addition, unsupervised machine learning decompositions of foraging identified specific behavior sequences, or "modules", that are affected by Arc. These findings highlight the genetic basis of cognitive biases in decision making, show links between behavior modules and cognitive bias, and provide insight into the ethological roles of Arc in naturalistic foraging.

3.
Cell Rep ; 38(10): 110500, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263575

RESUMO

Noncanonical genomic imprinting can cause biased expression of one parental allele in a tissue; however, the functional relevance of such biases is unclear. To investigate ethological roles for noncanonical imprinting in dopa decarboxylase (Ddc) and tyrosine hydroxylase (Th), we use machine learning to decompose naturalistic foraging in maternal and paternal allele mutant heterozygous mice. We uncover distinct roles for the maternal versus paternal alleles on foraging, where maternal alleles affect sons while daughters are under paternal allelic control. Each parental allele controls specific action sequences reflecting decisions in naive or familiar contexts. The maternal Ddc allele is preferentially expressed in subsets of hypothalamic GABAergic neurons, while the paternal allele predominates in subsets of adrenal cells. Each Ddc allele affects distinct molecular and endocrine components of the brain-adrenal axis. Thus, monoaminergic noncanonical imprinting has ethological roles in foraging and endocrine functions and operates by affecting discrete subsets of cells.


Assuntos
Encéfalo , Impressão Genômica , Alelos , Animais , Encéfalo/metabolismo , Heterozigoto , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...