Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473914

RESUMO

Interferon-induced transmembrane protein 3 (IFITM3) is a host antiviral protein that alters cell membranes to block fusion of viruses. Published reports have identified conflicting pro- and antiviral effects of IFITM3 on SARS-CoV-2 in cultured cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with mouse-adapted SARS-CoV-2 experienced extreme weight loss and lethality, while wild type (WT) mice lost minimal weight and recovered. KO mice had higher lung viral titers and increases in lung inflammatory cytokine levels, CD45-positive immune cell infiltration, and histopathology, compared to WT mice. Mechanistically, we observed disseminated viral antigen staining throughout the lung tissue and pulmonary vasculature in KO mice, while staining was observed in confined regions in WT lungs. Global transcriptomic analysis of infected lungs identified upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Corroborating the protective effect of IFITM3 in vivo, K18-hACE2/IFITM3 KO mice infected with non-adapted SARS-CoV-2 showed enhanced, rapid weight loss and early death compared to control mice. Increased heart infection was observed in both mouse models in the absence of IFITM3, indicating that IFITM3 constrains extrapulmonary dissemination of SARS-CoV-2. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection of the lung and cardiovascular system, and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections of mice.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20177196

RESUMO

BackgroundTo determine how serologic antibody testing outcome links with virus neutralization of SARS-CoV-2 to ascertain immune protection status, we evaluated a unique set of individuals for SARS-CoV-2 antibody detection and viral neutralization. MethodsHerein, we compare several analytic platforms with 15 positive and 30 negative SARS-CoV-2 infected controls followed by viral neutralization assessment. We then applied these platforms in a clinically relevant population: 114 individuals with unknown histories of SARS-CoV-2 infection. ResultsIn control populations, the best performing antibody detection assays were SARS-CoV-2 receptor binding domain (RBD) IgG (specificity 87%, sensitivity 100%, PPV 100%, NPV 93%), spike IgG3 (specificity 93%, sensitivity 97%, PPV 93%, NPV 97%), and nucleocapsid (NP) protein IgG (specificity 93%, sensitivity 97%, PPV 93%, NPV 97%). Neutralization of positive and negative control sera showed 100% agreement. 20 unknown individuals had detectable SARS-CoV-2 antibodies with 16 demonstrating virus neutralization. The antibody assays that best predicted virus neutralization were RBD IgG (misidentified 2), spike IgG3 (misidentified 1), and NP IgG (misidentified 2). ConclusionThese data suggest that meaningful evaluation of antibody assay performance requires testing in an unknown population. Further, these results indicate coupling of virus neutralization analysis to a positive antibody test is required to categorize patients based on SARS-CoV-2 immune protection status following virus exposure or vaccine administration. One of the antibody detection platforms identified in this study followed by the pseudoneutralization or focus reduction assay would provide a practical testing strategy to assess for SARS-CoV-2 antibodies with optimal prediction of correlates to neutralizing immunity. FundingSupported by NIH grants AI148684, AI151698, AI145296, and UW funds to the Center for Innate Immunity and Immune Disease.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20171843

RESUMO

The recently emerged SARS-CoV-2 virus is currently causing a global pandemic and cases continue to rise. The majority of infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that might contribute to herd immunity. Thus, we performed a longitudinal assessment of individuals recovered from mildly symptomatic COVID-19 to determine if they develop and sustain immunological memory against the virus. We found that recovered individuals developed SARS-CoV-2-specific IgG antibody and neutralizing plasma, as well as virus-specific memory B and T cells that not only persisted, but in some cases increased numerically over three months following symptom onset. Furthermore, the SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral immunity: memory T cells secreted IFN-{gamma} and expanded upon antigen re-encounter, while memory B cells expressed receptors capable of neutralizing virus when expressed as antibodies. These findings demonstrate that mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks associated with antiviral protective immunity.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-121640

RESUMO

The ongoing COVID-19 pandemic, caused by infection with SARS-CoV-2, is having a dramatic and deleterious impact on health services and the global economy. Grim public health statistics highlight the need for vaccines that can rapidly confer protection after a single dose and be manufactured using components suitable for scale-up and efficient distribution. In response, we have rapidly developed repRNA-CoV2S, a stable and highly immunogenic vaccine candidate comprised of an RNA replicon formulated with a novel Lipid InOrganic Nanoparticle (LION) designed to enhance vaccine stability, delivery and immunogenicity. We show that intramuscular injection of LION/repRNA-CoV2S elicits robust anti-SARS-CoV-2 spike protein IgG antibody isotypes indicative of a Type 1 T helper response as well as potent T cell responses in mice. Importantly, a single-dose administration in nonhuman primates elicited antibody responses that potently neutralized SARS-CoV-2. These data support further development of LION/repRNA-CoV2S as a vaccine candidate for prophylactic protection from SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...