Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-470440

RESUMO

We assessed if immune responses are enhanced in CD-1 mice by heterologous vaccination with two different nucleic acid-based COVID-19 vaccines: a next-generation human adenovirus serotype 5 (hAd5)-vectored dual-antigen spike (S) and nucleocapsid (N) vaccine (AdS+N) and a self-amplifying and -adjuvanted S RNA vaccine (SASA S) delivered by a nano-lipid carrier. The AdS+N vaccine encodes S modified with a fusion motif to increase cell-surface expression. The N antigen is modified with an Enhanced T-cell Stimulation Domain (N-ETSD) to direct N to the endosomal/lysosomal compartment and increase MHC class I and II stimulation potential. The S sequence in the SASA S vaccine comprises the D614G mutation, two prolines to stabilize S in the prefusion conformation, and 3 glutamines in the furin cleavage region to increase cross-reactivity across variants. CD-1 mice received vaccination by homologous and heterologous prime > boost combinations. Humoral responses to S were the highest with any regimen including the SASA S vaccine, and IgG bound to wild type and Delta (B.1.617.2) variant S1 at similar levels. An AdS+N boost of an SASA S prime particularly enhanced both CD4+ and CD8+ T-cell responses to both wild type and Delta S peptides relative to all other vaccine regimens. Sera from mice receiving SASA S homologous or heterologous vaccination were found to be highly neutralizing of all pseudovirus strains tested: Wuhan, Beta, Delta, and Omicron strain. The findings here support the clinical testing of heterologous vaccination by an SASA S > AdS+N regimen to provide increased protection against emerging SARS-CoV-2 variants.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-429283

RESUMO

Current RNA vaccines against SARS-CoV-2 are limited by instability of both the RNA and the lipid nanoparticle delivery system, requiring storage at -20{degrees}C or -70{degrees}C and compromising universally accessible vaccine distribution. This study demonstrates the thermostability and adaptability of a nanostructured lipid carrier (NLC) RNA vaccine delivery system for use in pandemic preparedness and pandemic response. Liquid NLC is stable at refrigerated temperatures for [≥] 1 year, enabling stockpiling and rapid deployment by point-of-care mixing with any vaccine RNA. Alternatively, NLC complexed with RNA may be readily lyophilized and stored at room temperature for [≥] 8 months or refrigerated temperature for [≥] 21 months. This thermostable RNA vaccine platform could significantly improve distribution of current and future pandemic response vaccines, particularly in low-resource settings. One Sentence SummaryAn RNA vaccine delivery system stable at room temperature for 8+ months and refrigerated for 21+ months.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...