Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Dis Model ; 8(4): 1015-1031, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649792

RESUMO

Malaria importation is one of the hypothetical drivers of malaria transmission dynamics across the globe. Several studies on malaria importation focused on the effect of the use of conventional malaria control strategies as approved by the World Health Organization (WHO) on malaria transmission dynamics but did not capture the effect of the use of traditional malaria control strategies by vigilant humans. In order to handle the aforementioned situation, a novel system of Ordinary Differential Equations (ODEs) was developed comprising the human and the malaria vector compartments. Analysis of the system was carried out to assess its quantitative properties. The novel computational algorithm used to solve the developed system of ODEs was implemented and benchmarked with the existing Runge-Kutta numerical solution method. Furthermore, simulations of different vigilant conditions useful to control malaria were carried out. The novel system of malaria models was well-posed and epidemiologically meaningful based on its quantitative properties. The novel algorithm performed relatively better in terms of model simulation accuracy than Runge-Kutta. At the best model-fit condition of 98% vigilance to the use of conventional and traditional malaria control strategies, this study revealed that malaria importation has a persistent impact on malaria transmission dynamics. In lieu of this, this study opined that total vigilance to the use of the WHO-approved and traditional malaria management tools would be the most effective control strategy against malaria importation.

2.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477976

RESUMO

MOTIVATION: Post-genome-wide association studies (pGWAS) analysis is designed to decipher the functional consequences of significant single-nucleotide polymorphisms (SNPs) in the era of GWAS. This can be translated into research insights and clinical benefits such as the effectiveness of strategies for disease screening, treatment and prevention. However, the setup of pGWAS (pGWAS) tools can be quite complicated, and it mostly requires big data. The challenge however is, scientists are required to have sufficient experience with several of these technically complex and complicated tools in order to complete the pGWAS analysis. RESULTS: We present SysBiolPGWAS, a pGWAS web application that provides a comprehensive functionality for biologists and non-bioinformaticians to conduct several pGWAS analyses to overcome the above challenges. It provides unique functionalities for analysis involving multi-omics datasets and visualization using various bioinformatics tools. SysBiolPGWAS provides access to individual pGWAS tools and a novel custom pGWAS pipeline that integrates several individual pGWAS tools and data. The SysBiolPGWAS app was developed to be a one-stop shop for pGWAS analysis. It targets researchers in the area of the human genome and performs its analysis mainly in the autosomal chromosomes. AVAILABILITY AND IMPLEMENTATION: SysBiolPGWAS web app was developed using JavaScript/TypeScript web frameworks and is available at: https://spgwas.waslitbre.org/. All codes are available in this GitHub repository https://github.com/covenant-university-bioinformatics.


Assuntos
Biologia Computacional , Estudo de Associação Genômica Ampla , Humanos , Software , Multiômica , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...