Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 17(1): 84, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616066

RESUMO

BACKGROUND: People use various strategies to maintain balance, such as taking a reactive step or rotating the upper body. To gain insight in human balance control, it is useful to know what makes people switch from one strategy to another. In previous studies the transition from a non-stepping balance response to reactive stepping was often described by an (extended) inverted pendulum model using a limited number of features. The goal of this study is to predict whether people will take a reactive step to recover from a push and to investigate what features are most relevant for that prediction by using a data-driven approach. METHODS: Ten subjects participated in an experiment in which they received forward pushes to which they had to respond naturally with or without stepping. The collected kinematic and center of pressure data were used to train several classification algorithms to predict reactive stepping. The classification algorithms that performed best were used to determine the most important features through recursive feature elimination. RESULTS: The neural networks performed better than the other classification algorithms. The prediction accuracy depended on the length of the observation time window: the longer the allowed time between the push and the prediction, the higher the accuracy. Using a neural network with one hidden layer and eight neurons, and a feature set consisting of various kinematic and center of pressure related features, an accuracy of 0.91 was obtained for predictions made up until the moment of step leg unloading, in combination with a sensitivity of 0.79 and a specificity 0.97. The most important features were the acceleration and velocity of the center of mass, and the position of the cervical joint center. CONCLUSION: Using our classification-based method the occurrence of reactive stepping could be predicted with a high accuracy, higher than previous methods for predicting natural reactive stepping. The feature set used for that prediction was different from the ones reported in other step prediction studies. Given the high step prediction performance, our method has the potential to be used for triggering reactive stepping in balance controllers of bipedal robots (e.g. exoskeletons).


Assuntos
Algoritmos , Fenômenos Biomecânicos/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Feminino , Humanos , Masculino
2.
J Neuroeng Rehabil ; 15(1): 50, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914505

RESUMO

BACKGROUND: Lower extremity exoskeletons are mainly used to provide stepping support, while balancing is left to the user. Designing balance controllers is one of the biggest challenges in the development of exoskeletons. The goal of this study was to design and evaluate a balance controller for a powered ankle-foot orthosis and assess its effect on the standing balance of healthy subjects. METHODS: We designed and implemented a balance controller based on the subject's body sway. This controller was compared to a simple virtual-ankle stiffness and a zero impedance controller. Ten healthy subjects wearing a powered ankle-foot orthosis had to maintain standing balance without stepping while receiving anteroposterior pushes. Center of mass kinematics, ankle torques and muscle activity of the lower legs were analyzed to assess the balance performance of the user and exoskeleton. RESULTS: The different controllers did not significantly affect the center of mass responses. However, the body sway based controller resulted in a decrease of 29% in the biological ankle torque compared to the zero impedance controller and a decrease of 32% compared to the virtual-ankle stiffness. Furthermore, the soleus muscle activity of the left and right leg decreased on average with 8%, while the tibialis anterior muscle activity increased with 47% compared to zero impedance. CONCLUSION: The body sway based controller generated human-like torque profiles, whereas the virtual-ankle stiffness did not. As a result, the powered ankle-foot orthosis with the body sway based controller was effective in assisting the healthy subjects in maintaining balance, although the improvements were not seen in the body sway response, but in the subjects' decreased biological ankle torques to counteract the perturbations. This decrease was a combined effect of decreased soleus muscle activity and increased tibialis anterior muscle activity.


Assuntos
Exoesqueleto Energizado , Órtoses do Pé , Equilíbrio Postural/fisiologia , Adulto , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Feminino , Pé/fisiologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...