Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(22): 6538-6544, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771703

RESUMO

With a seminal work of Raghu and Haldane in 2008, concepts of topology have been introduced into optical systems, where some of the most promising routes to an application are efficient and highly coherent topological lasers. While some attempts have been made to excite such structures electrically, the majority of published experiments use a form of laser excitation. In this paper, we use a lattice of vertical resonator polariton micropillars to form an exponentially localized topological Su-Schrieffer-Heeger defect. Upon electrical excitation, the system unequivocally shows polariton lasing from the topological defect using a carefully placed gold contact. Despite the presence of doping and electrical contacts, the polariton band structure clearly preserves its topological properties. At high excitation power the Mott density is exceeded, leading to highly efficient lasing in the weak coupling regime. This work is an important step toward applied topological lasers using vertical resonator microcavity structures.

2.
Adv Sci (Weinh) ; 11(21): e2400672, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38605674

RESUMO

Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many-body effects, and phenomena arising from non-trivial topology. Exciton-polaritons, bosonic part-light and part-matter quasiparticles, combine pronounced nonlinearities with the possibility of on-chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many-body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra-stable Frenkel excitons. A well-controlled, high-quality optical lattice is implemented that accommodates light-matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state-of-the-art inorganic semiconductor-based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non-Hermitian optics.

3.
Opt Express ; 31(16): 26898-26909, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710539

RESUMO

We present an optical spectroscopic study of InGaAs/AlInAs active region of quantum cascade lasers grown by low pressure metal organic vapor phase epitaxy combined with subwavelength gratings fabricated by reactive ion etching. Fourier-transformed photoluminescence measurements were used to compare the emission properties of structures before and after processing the gratings. Our results demonstrate a significant increase of the photoluminescence intensity related to intersubband transitions in the mid-infrared, which is attributed to coupling with the grating modes via so called photonic Fano resonances. Our findings demonstrate a promising method for enhancing the emission in optoelectronic devices operating in a broad range of application-relevant infrared.

4.
Nanoscale ; 15(11): 5249-5256, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36794456

RESUMO

Stacked organic optoelectronic devices make use of electrode materials with different work functions, leading to efficient large area light emission. In contrast, lateral electrode arrangements offer the possibility to be shaped as resonant optical antennas, radiating light from subwavelength volumes. However, tailoring electronic interface properties of laterally arranged electrodes with nanoscale gaps - to e.g. optimize charge-carrier injection - is rather challenging, yet crucial for further development of highly efficient nanolight sources. Here, we demonstrate site-selective functionalization of laterally arranged micro- and nanoelectrodes by means of different self-assembled monolayers. Upon applying an electric potential across nanoscale gaps, surface-bound molecules are removed selectively from specific electrodes by oxidative desorption. Kelvin-probe force microscopy as well as photoluminescence measurements are employed to verify the success of our approach. Moreover, we obtain asymmetric current-voltage characteristics for metal-organic devices in which just one of the electrodes is coated with 1-octadecanethiol; further demonstrating the potential to tune interface properties of nanoscale objects. Our technique paves the way for laterally arranged optoelectronic devices based on selectively engineered nanoscale interfaces and in principle enables molecular assembly with defined orientation in metallic nano-gaps.

5.
Nano Lett ; 23(3): 820-826, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36656001

RESUMO

The introduction of topological physics into the field of photonics has led to the development of photonic devices endowed with robustness against structural disorder. While a range of platforms have been successfully implemented demonstrating topological protection of light in the classical domain, the implementation of quantum light sources in photonic devices harnessing topologically nontrivial resonances is largely unexplored. Here, we demonstrate a single photon source based on a single semiconductor quantum dot coupled to a topologically nontrivial Su-Schrieffer-Heeger (SSH) cavity mode. We provide an in-depth study of Purcell enhancement for this topological quantum light source and demonstrate its emission of nonclassical light on demand. Our approach is a promising step toward the application of topological cavities in quantum photonics.

6.
Nano Lett ; 22(17): 6982-6987, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35998329

RESUMO

Visible and infrared photons can be detected with a broadband response via the internal photoeffect. By use of plasmonic nanostructures, i.e., nanoantennas, wavelength selectivity can be introduced to such detectors through geometry-dependent resonances. Also, additional functionality, like electronic responsivity switching and polarization detection, has been realized. However, previous devices consisted of large arrays of nanostructures to achieve detectable photocurrents. Here we show that this concept can be scaled down to a single antenna level, resulting in detector dimensions well below the resonance wavelength of the device. Our design consists of a single electrically connected plasmonic nanoantenna covered with a wide-bandgap semiconductor allowing broadband photodetection in the visible/near-infrared via injection of hot carriers. We demonstrate electrical switching of the color sensitivity as well as polarization detection. Our results hold promise for the realization of ultrasmall photodetectors with advanced functionality.

7.
Nano Lett ; 22(3): 1032-1038, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35001635

RESUMO

Future photonic devices require efficient, multifunctional, electrically driven light sources with directional emission properties and subwavelength dimensions. Electrically driven plasmonic nanoantennas have been demonstrated as enabling technology. Here, we present the concept of a nanoscale organic light-emitting antenna (OLEA) as a color- and directionality-switchable point source. The device consists of laterally arranged electrically contacted gold nanoantennas with their gap filled by the organic semiconductor zinc phthalocyanine (ZnPc). Since ZnPc shows preferred hole conduction in combination with gold, the recombination zone relocates depending on the polarity of the applied voltage and couples selectively to either of the two antennas. Thereby, the emission characteristics of the device also depend on polarity. Contrary to large-area OLEDs where recombination at metal contacts significantly contributes to losses, our ultracompact OLEA structures facilitate efficient radiation into the far-field rendering transparent electrodes obsolete. We envision OLEA structures to serve as wavelength-scale pixels with tunable color and directionality for advanced display applications.

8.
Science ; 373(6562): 1514-1517, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34554782

RESUMO

Topological insulator lasers are arrays of semiconductor lasers that exploit fundamental features of topology to force all emitters to act as a single coherent laser. In this study, we demonstrate a topological insulator vertical-cavity surface-emitting laser (VCSEL) array. Each VCSEL emits vertically, but the in-plane coupling between emitters in the topological-crystalline platform facilitates coherent emission of the whole array. Our topological VCSEL array emits at a single frequency and displays interference, highlighting that the emitters are mutually coherent. Our experiments exemplify the power of topological transport of light: The light spends most of its time oscillating vertically, but the small in-plane coupling is sufficient to force the array of individual emitters to act as a single laser.

9.
Nano Lett ; 21(15): 6398-6405, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34328737

RESUMO

Interacting bosonic particles in artificial lattices have proven to be a powerful tool for the investigation of exotic phases of matter as well as phenomena resulting from nontrivial topology. Exciton-polaritons, bosonic quasi-particles of light and matter, have been shown to combine the on-chip benefits of optical systems with strong interactions, inherited from their matter character. Technologically significant semiconductor platforms strictly require cryogenic temperatures. In this communication, we demonstrate exciton-polariton lasing for topological defects emerging from the imprinted lattice structure at room temperature. We utilize red fluorescent protein derived from DsRed of Discosoma sea anemones, hosting highly stable Frenkel excitons. Using a patterned mirror cavity, we tune the lattice potential landscape of a linear Su-Schrieffer-Heeger chain to design topological defects at domain boundaries and at the edge. We unequivocally demonstrate polariton lasing from these topological defects. This progress has paved the road to interacting boson many-body physics under ambient conditions.


Assuntos
Lasers , Fótons , Semicondutores , Temperatura
10.
Nano Lett ; 21(10): 4225-4230, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33929199

RESUMO

The electrical excitation of guided plasmonic modes at the nanoscale enables integration of optical nanocircuitry into nanoelectronics. In this context, exciting plasmons with a distinct modal field profile constitutes a key advantage over conventional single-mode integrated photonics. Here, we demonstrate the selective electrical excitation of the lowest-order symmetric and antisymmetric plasmonic modes in a two-wire transmission line. We achieve mode selectivity by precisely positioning nanoscale excitation sources, i.e., junctions for inelastic electron tunneling, within the respective modal field distribution. By using advanced fabrication that combines focused He-ion beam milling and dielectrophoresis, we control the location of tunnel junctions with sub-10 nm accuracy. At the far end of the two-wire transmission line, the guided plasmonic modes are converted into far-field radiation at separate spatial positions showing two distinct orthogonal polarizations. Hence, the resulting device represents the smallest electrically driven light source with directly switchable polarization states with possible applications in display technology.

11.
C R Phys ; 22(Suppl 4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-37965186

RESUMO

Circular Bragg gratings compose a very appealing photonic platform and nanophotonic interface for the controlled light-matter coupling of emitters in nanomaterials. Here, we discuss the integration of exfoliated monolayers of WSe2 with GaInP Bragg gratings. We apply hyperspectral imaging to our coupled system, and explore the spatio-spectral characteristics of our coupled monolayer-cavity system. Our work represents a valuable step towards the integration of atomically thin quantum emitters in semiconductor nanophotonic cavities.

12.
Nat Commun ; 11(1): 115, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913288

RESUMO

Yagi-Uda antennas are a key technology for efficiently transmitting information from point to point using radio waves. Since higher frequencies allow higher bandwidths and smaller footprints, a strong incentive exists to shrink Yagi-Uda antennas down to the optical regime. Here we demonstrate electrically-driven Yagi-Uda antennas for light with wavelength-scale footprints that exhibit large directionalities with forward-to-backward ratios of up to 9.1 dB. Light generation is achieved via antenna-enhanced inelastic tunneling of electrons over the antenna feed gap. We obtain reproducible tunnel gaps by means of feedback-controlled dielectrophoresis, which precisely places single surface-passivated gold nanoparticles in the antenna gap. The resulting antennas perform equivalent to radio-frequency antennas and combined with waveguiding layers even outperform RF designs. This work paves the way for optical on-chip data communication that is not restricted by Joule heating but also for advanced light management in nanoscale sensing and metrology as well as light emitting devices.

13.
Phys Rev Lett ; 122(24): 246802, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322365

RESUMO

Gold nanostructures have important applications in nanoelectronics, nano-optics, and in precision metrology due to their intriguing optoelectronic properties. These properties are governed by the bulk band structure but to some extent are tunable via geometrical resonances. Here we show that the band structure of gold itself exhibits significant size-dependent changes already for mesoscopic critical dimensions below 30 nm. To suppress the effects of geometrical resonances and grain boundaries, we prepared atomically flat ultrathin films of various thicknesses by utilizing large chemically grown single-crystalline gold platelets. We experimentally probe thickness-dependent changes of the band structure by means of two-photon photoluminescence and observe a surprising 100-fold increase of the nonlinear signal when the gold film thickness is reduced below 30 nm allowing us to optically resolve single-unit-cell steps. The effect is well explained by density functional calculations of the thickness-dependent 2D band structure of gold.

14.
Light Sci Appl ; 7: 99, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534368

RESUMO

Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1. Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tuned mirror2-4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor of two. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color SMLM in cells.

15.
Opt Express ; 26(20): 25944-25951, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469688

RESUMO

We discuss coupling of site-selectively induced quantum emitters in exfoliated monolayers of WSe2 to plasmonic nanostructures. Gold nanorods of 20 nm-240 nm size, which are arranged in pitches of a few micrometers on a dielectric surface, act as seeds for the formation of quantum emitters in the atomically thin materials. We observe characteristic narrow-band emission signals from the monolayers, which correspond well with the positions of the metallic nanopillars with and without thin dielectric coating. Single photon emission from the emitters is confirmed by autocorrelation measurements, yielding g2(τ = 0) values as low as 0.17. Moreover, we observe a strong co-polarization of our single photon emitters with the frequency matched plasmonic resonances, as a consequence of light-matter coupling. Our work represents a significant step towards the scalable implementation of coupled quantum emitter-resonator systems for highly integrated quantum photonic and plasmonic applications.

16.
Phys Rev Lett ; 121(25): 257402, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608796

RESUMO

Two-dimensional electronic materials such as graphene and transition metal dichalgenides feature unique electrical and optical properties due to the conspirative effect of band structure, orbital coupling, and crystal symmetry. Synthetic matter, as accomplished by artificial lattice arrangements of cold atoms, molecules, electron patterning, and optical cavities, has emerged to provide manifold intriguing frameworks to likewise realize such scenarios. Exciton polaritons have recently been added to the list of promising candidates for the emulation of system Hamiltonians on a semiconductor platform, offering versatile tools to engineer the potential landscape and to access the nonlinear electro-optical regime. In this work, we introduce an electronically driven square and honeycomb lattice of exciton polaritons, paving the way towards real world devices based on polariton lattices for on-chip applications. Our platform exhibits laserlike emission from high-symmetry points under direct current injection, hinting at the prospect of electrically driven polariton lasers with possibly topologically nontrivial properties.

17.
Light Sci Appl ; 7: 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839591

RESUMO

Two-level emitters are the main building blocks of photonic quantum technologies and are model systems for the exploration of quantum optics in the solid state. Most interesting is the strict resonant excitation of such emitters to control their occupation coherently and to generate close to ideal quantum light, which is of utmost importance for applications in photonic quantum technology. To date, the approaches and experiments in this field have been performed exclusively using bulky lasers, which hinders the application of resonantly driven two-level emitters in compact photonic quantum systems. Here we address this issue and present a concept for a compact resonantly driven single-photon source by performing quantum-optical spectroscopy of a two-level system using a compact high-ß microlaser as the excitation source. The two-level system is based on a semiconductor quantum dot (QD), which is excited resonantly by a fiber-coupled electrically driven micropillar laser. We dress the excitonic state of the QD under continuous wave excitation, and trigger the emission of single photons with strong multi-photon suppression ( g ( 2 ) ( 0 ) = 0.02 ) and high photon indistinguishability (V = 57±9%) via pulsed resonant excitation at 156 MHz. These results clearly demonstrate the high potential of our resonant excitation scheme, which can pave the way for compact electrically driven quantum light sources with excellent quantum properties to enable the implementation of advanced quantum communication protocols.

18.
Optica ; 4(7): 802-808, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28894770

RESUMO

Deterministic techniques enabling the implementation and engineering of bright and coherent solid-state quantum light sources are key for the reliable realization of a next generation of quantum devices. Such a technology, at best, should allow one to significantly scale up the number of implemented devices within a given processing time. In this work, we discuss a possible technology platform for such a scaling procedure, relying on the application of nanoscale quantum dot imaging to the pillar microcavity architecture, which promises to combine very high photon extraction efficiency and indistinguishability. We discuss the alignment technology in detail, and present the optical characterization of a selected device which features a strongly Purcell-enhanced emission output. This device, which yields an extraction efficiency of η = (49 ± 4) %, facilitates the emission of photons with (94 ± 2.7) % indistinguishability.

19.
Nano Lett ; 12(11): 5504-9, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22984927

RESUMO

In the presence of matter, there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding resonant intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically defined gaps reaching below 0.5 nm. The existence of atomically confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and antisymmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically resolved spectroscopic imaging, deeply nonlinear optics, ultrasensing, cavity optomechanics, as well as for the realization of novel quantum-optical devices.


Assuntos
Nanotecnologia/métodos , Óptica e Fotônica , Dimerização , Campos Eletromagnéticos , Ouro/química , Luz , Nanopartículas Metálicas/química , Nanotubos , Teoria Quântica , Espalhamento de Radiação , Espectrofotometria/métodos
20.
Nano Lett ; 12(8): 3915-9, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22800440

RESUMO

Electrically connected resonant optical antennas hold promise for the realization of highly efficient nanoscale electro-plasmonic devices that rely on a combination of electric fields and local near-field intensity enhancement. Here we demonstrate the feasibility of such a concept by attaching leads to the arms of a two-wire antenna at positions of minimal near-field intensity with negligible influence on the antenna resonance. White-light scattering experiments in accordance with simulations show that the optical tunability of connected antennas is fully retained. Analysis of the electric properties demonstrates that in the antenna gaps direct current (DC) electric fields of 10(8) V/m can consistently be achieved and maintained over extended periods of time without noticeable damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...